Contents

Preface

- Intended Audience
- Organization
- Conventions
- Terminology
- Related Publications

1. Introduction

2. Programming Guide

- CUDA Fortran Kernels
- Thread Blocks
- Memory Hierarchy
- Subroutine / Function Qualifiers
 - Attributes(host)
 - Attributes(global)
 - Attributes(device)
 - Restrictions
- Variable Qualifiers
 - Attributes(device)
 - Attributes(constant)
 - Attributes(shared)
 - Attributes(pinned)
- Datatypes in Device Subprograms
- Predefined Variables in Device Subprograms
- Execution Configuration
- Asynchronous Concurrent Execution
 - Concurrent Host and Device Execution
 - Concurrent Stream Execution
- Kernel Loop Directive
 - Restrictions on the CUF kernel directive
- Building a CUDA Fortran Program
- Emulation Mode
3. Reference ... 13
 New Subroutine and Function Attributes .. 13
 Host Subroutines and Functions ... 13
 Global Subroutines ... 13
 Device Subroutines and Functions .. 14
 Restrictions on Device Subprograms ... 14
 Variable Attributes ... 14
 Device data .. 14
 Constant data .. 15
 Shared data .. 16
 Value dummy arguments ... 17
 Pinned arrays ... 17
 Allocating Device and Pinned Arrays ... 17
 Allocating Device Memory ... 18
 Allocating Device Memory Using Runtime Routines 18
 Allocating Pinned Memory ... 18
 Data transfer between host and device memory 19
 Data Transfer Using Assignment Statements 19
 Implicit Data Transfer in Expressions ... 19
 Data Transfer Using Runtime Routines .. 20
 Invoking a kernel subroutine ... 20
 Device code .. 21
 Datatypes allowed ... 21
 Built-in variables ... 22
 Fortran Intrinsics ... 22
 New Intrinsic Functions ... 24
 Warp-Vote Operations .. 26
 Atomic Functions .. 27
 Restrictions .. 28
 PRINT and WRITE Statements ... 29
 Host code .. 29
 SIZEOF Intrinsic .. 29
 Fortran Modules .. 29
 Device Modules ... 29
 Host Modules .. 31

4. Runtime APIs .. 33
 Initialization ... 33
 Device Management .. 33
 cudaChooseDevice ... 33
 cudaDeviceGetCacheConfig ... 33
 cudaDeviceGetLimit ... 34
 cudaDeviceReset .. 34
 cudaDeviceSetCacheConfig .. 34
 cudaDeviceSetLimit ... 34
 cudaDeviceSynchronize ... 34
cudaGetDevice ... 34
cudaGetDeviceCount ... 34
cudaGetDeviceProperties ... 35
cudaSetDevice .. 35
cudaSetDeviceFlags .. 35
cudaSetValidDevices .. 35
Thread Management ... 35
cudaThreadExit ... 35
cudaThreadSynchronize ... 35
Error Handling ... 36
cudaGetErrorString ... 36
cudaGetLastError ... 36
cudaPeekAtLastError ... 36
Stream Management ... 36
cudaStreamCreate .. 36
cudaStreamDestroy ... 36
cudaStreamQuery ... 36
cudaStreamSynchronize ... 36
cudaStreamWaitEvent ... 36
Event Management ... 37
cudaEventCreate .. 37
cudaEventCreateWithFlags ... 37
cudaEventDestroy ... 37
cudaEventElapsedTime .. 37
cudaEventQuery .. 37
cudaEventRecord .. 37
cudaEventSynchronize .. 37
Execution Control .. 38
cudaFuncGetAttributes ... 38
cudaFuncGetCacheConfig ... 38
cudaSetDoubleForDevice ... 39
cudaSetDoubleForHost ... 39
Memory Management ... 39
cudaFree .. 39
cudaFreeArray .. 39
cudaFreeHost .. 39
cudaGetSymbolAddress ... 40
cudaGetSymbolSize .. 40
cudaHostAlloc .. 40
cudaHostGetDevicePointer ... 40
cudaHostGetFlags ... 41
cudaHostRegister .. 41
cudaHostUnregister .. 41
cudaMalloc ... 41
cudaMallocArray .. 41
cudaMallocHost .. 41
Tables

2.1. Intrinsic Datatypes .. 6
3.1. Device Code Intrinsic Datatypes ... 21
3.2. Fortran Numeric and Logical Intrinsics .. 22
3.3. Fortran Mathematical Intrinsics ... 23
3.4. Fortran Numeric Inquiry Intrinsics ... 23
3.5. Fortran Bit Manipulation Intrinsics .. 23
3.6. Fortran Reduction Intrinsics ... 23
3.7. Fortran Random Number Intrinsics .. 24
3.8. Arithmetic and Bitwise Atomic Functions .. 27
3.9. Counting Atomic Functions .. 28
3.10. Compare and Swap Atomic Function .. 28
3.11. CUDA Built-in Routines ... 30
Preface

This document describes CUDA Fortran, a small set of extensions to Fortran that supports and is built upon the CUDA computing architecture.

Intended Audience

This guide is intended for application programmers, scientists and engineers proficient in programming with the Fortran, C, and/or C++ languages. The PGI tools are available on a variety of operating systems for the X86, AMD64, and Intel 64 hardware platforms. This guide assumes familiarity with basic operating system usage.

Organization

The organization of this document is as follows:

Chapter 1, "Introduction"
 contains a general introduction

Chapter 2, "Programming Guide"
 serves as a programming guide for CUDA Fortran

Chapter 3, "Reference"
 describes the CUDA Fortran language reference

Chapter 4, "Runtime APIs"
 describes the interface between CUDA Fortran and the CUDA Runtime API

Chapter 5, "Examples"
 provides sample code and an explanation of the simple example.

Conventions

This guide uses the following conventions:

italic
 is used for emphasis.
Terminology

Constant Width

is used for filenames, directories, arguments, options, examples, and for language statements in the text, including assembly language statements.

Bold

is used for commands.

[item1]

in general, square brackets indicate optional items. In this case item1 is optional. In the context of p/t-sets, square brackets are required to specify a p/t-set.

{ item2 | item 3}

braces indicate that a selection is required. In this case, you must select either item2 or item3.

filename ...

ellipsis indicate a repetition. Zero or more of the preceding item may occur. In this example, multiple filenames are allowed.

FORTRAN

Fortran language statements are shown in the text of this guide using a reduced fixed point size.

C/C++

C/C++ language statements are shown in the test of this guide using a reduced fixed point size.

The PGI compilers and tools are supported on both 32-bit and 64-bit variants of the Linux, MacOS, and Windows operating systems on a variety of x86-compatible processors. There are a wide variety of releases and distributions of each of these types of operating systems.

Terminology

If there are terms in this guide with which you are unfamiliar, PGI provides a glossary of terms which you can access at www.pgroup.com/support/definitions.htm

Related Publications

The following documents contain additional information related to CUDA Fortran programming.

Chapter 1. Introduction

Welcome to Release 2011 of PGI CUDA Fortran, a small set of extensions to Fortran that supports and is built upon the CUDA computing architecture.

Graphic processing units or GPUs have evolved into programmable, highly parallel computational units with very high memory bandwidth, and tremendous potential for many applications. GPU designs are optimized for the computations found in graphics rendering, but are general enough to be useful in many data-parallel, compute-intensive programs.

NVIDIA introduced CUDA™, a general purpose parallel programming architecture, with compilers and libraries to support the programming of NVIDIA GPUs. CUDA comes with an extended C compiler, here called CUDA C, allowing direct programming of the GPU from a high level language. The programming model supports four key abstractions: cooperating threads organized into thread groups, shared memory and barrier synchronization within thread groups, and coordinated independent thread groups organized into a grid. A CUDA programmer must partition the program into coarse grain blocks that can be executed in parallel. Each block is partitioned into fine grain threads, which can cooperate using shared memory and barrier synchronization. A properly designed CUDA program will run on any CUDA-enabled GPU, regardless of the number of available processor cores.

CUDA Fortran includes a Fortran 2003 compiler and tool chain for programming NVIDIA GPUs using Fortran. PGI 2011 includes support for CUDA Fortran on Linux, Mac OS X and Windows. CUDA Fortran is an analog to NVIDIA’s CUDA C compiler. Compared to the PGI Accelerator™ directives-based model and compilers, CUDA Fortran is a lower-level explicit programming model with substantial runtime library components that give expert programmers direct control of all aspects of GPGPU programming.

The CUDA Fortran extensions described in this document allow the following operations in a Fortran program:

- Declaring variables that are allocated in the GPU device memory
- Allocating dynamic memory in the GPU device memory
- Copying data from the host memory to the GPU memory, and back
- Writing subroutines and functions to execute on the GPU
- Invoking GPU subroutines from the host
• Allocating pinned memory on the host
• Using asynchronous transfers between the host and GPU
Chapter 2. Programming Guide

This chapter introduces the CUDA programming model through examples written in CUDA Fortran. For a reference for CUDA Fortran, refer to Chapter 3, “Reference,” on page 13.

CUDA Fortran Kernels

CUDA Fortran allows the definition of Fortran subroutines that execute in parallel on the GPU when called from the Fortran program which has been invoked and is running on the host. Such a subroutine is called a device kernel or kernel.

A call to a kernel specifies how many parallel instances of the kernel must be executed; each instance will be executed by a different CUDA thread. The CUDA threads are organized into thread blocks, and each thread has a global thread block index, and a local thread index within its thread block.

A kernel is defined using the attributes(global) specifier on the subroutine statement; a kernel is called using special chevron syntax to specify the number of thread blocks and threads within each thread block:

```fortran
! Kernel definition
attributes(global) subroutine ksaxpy( n, a, x, y )
    real, dimension(*) :: x, y
    real, value :: a
    integer, value :: n, i
    i = (blockidx%x-1) * blockdim%x + threadIdx%x
    if( i <= n ) y(i) = a * x(i) + y(i)
end subroutine

! Host subroutine
subroutine solve( n, a, x, y )
    real, device, dimension(*) :: x, y
    real :: a
    integer :: n
    ! call the kernel
    call ksaxpy<<<n/64, 64>>>( n, a, x, y )
end subroutine
```

In this case, the call to the kernel ksaxpy specifies n/64 thread blocks, each with 64 threads. Each thread is assigned a thread block index accessed through the built-in blockIdx variable, and a thread index accessed through threadIdx. In this example, each thread performs one iteration of the common SAXPY loop operation.
Thread Blocks

Each thread is assigned a thread block index accessed through the built-in `blockidx` variable, and a thread index accessed through `threadidx`. The thread index may be a one-, two-, or three-dimensional index. In CUDA Fortran, the thread index for each dimension starts at one. A unique thread ID is assigned to each thread, computed from the thread index.

For a one-dimensional thread block, the thread index is equal to the thread ID. For a two-dimensional thread block of size \((D_x, D_y)\), the thread ID is equal to \((x + D_x(y - 1))\). For a three-dimensional thread block of size \((D_x, D_y, D_z)\), the thread ID is \((x + D_x(y - 1) + D_y(z - 1))\).

Threads in the same thread block may cooperate by using shared memory, and by synchronizing at a barrier using the `SYNCTHREADS()` intrinsic. Each thread in the block waits at the call to `SYNCTHREADS()` until all threads have reached that call. The shared memory acts like a low-latency, high bandwidth software managed cache memory. Currently, the maximum number of threads in a thread block is 512.

A kernel may be invoked with many thread blocks, each with the same thread block size. The thread blocks are organized into a one- or two-dimensional grid of blocks, so each thread has a thread index within the block, and a block index within the grid. When invoking a kernel, the first argument in the chevron `<<<>>>` syntax is the grid size, and the second argument is the thread block size. Thread blocks must be able to execute independently; two thread blocks may be executed in parallel or one after the other, by the same core or by different cores.

Memory Hierarchy

CUDA Fortran programs have access to several memory spaces. On the host side, the host program can directly access data in the host main memory. It can also directly copy data to and from the device global memory; such data copies require DMA access to the device, so are slow relative to the host memory. The host can also set the values in the device constant memory, again implemented using DMA access.

On the device side, data in global device memory can be read or written by all threads. Data in constant memory space is initialized by the host program; all threads can read data in constant memory. Accesses to constant memory are typically faster than accesses to global memory, but it is read-only to the threads and limited in size. Threads in the same thread block can access and share data in shared memory; data in shared memory has a lifetime of the thread block. Each thread can also have private local memory; data in thread local memory may be implemented as processor registers or may be allocated in the global device memory; best performance will often be obtained when thread local data is limited to a small number of scalars that can be allocated as processor registers.

Subroutine / Function Qualifiers

A subroutine or function in CUDA Fortran has an additional attribute, designating whether it is executed on the host or on the device, and if the latter, whether it is a kernel, called from the host, or called from another device subprogram.

- A subprogram declared with `attributes(host)`, or with the host attribute by default, is called a `host subprogram`.
• A subprogram declared with attributes(global) or attributes(device) is called a device subprogram.

• A subroutine declared with attributes(global) is also called a kernel subroutine.

Attributes(host)

The host attribute, specified on the subroutine or function statement, declares that the subroutine or function is to be executed on the host. Such a subprogram can only be called from another host subprogram. The default is attributes(host), if none of the host, global, or device attributes is specified.

Attributes(global)

The global attribute may only be specified on a subroutine statement; it declares that the subroutine is a kernel subroutine, to be executed on the device, and may only be called from the host using a kernel call containing the chevron syntax and runtime mapping parameters.

Attributes(device)

The device attribute, specified on the subroutine or function statement, declares that the subprogram is to be executed on the device; such a routine must be called from a subprogram with the global or device attribute.

Restrictions

The following restrictions apply to subprograms:

• A device subprogram must not be recursive.

• A device subprogram must not contain variables with the SAVE attribute, or with data initialization.

• A kernel subroutine may not also have the device or host attribute.

• A device subprogram must not have optional arguments. Dummy arguments in a device subprogram must not have the pointer attribute.

• Calls to a kernel subroutine must specify the execution configuration, as described in “Predefined Variables in Device Subprograms,” on page 7. Such a call is asynchronous, that is, the host routine making the call continues to execute before the device has completed its execution of the kernel subroutine.

• Device subprograms may not be contained in a host subroutine or function, and may not contain any subroutines or functions.

Variable Qualifiers

Variables in CUDA Fortran have a new attribute, which declares in which memory the data is allocated. By default, variables declared in modules or host subprograms are allocated in the host main memory. At most one of the device, constant, shared, or pinned attributes may be specified for a variable.

Attributes(device)

A variable with the device attribute is called a device variable, and is allocated in the device global memory.
• If declared in a module, the variable may be accessed by any subprogram in that module and by any
subprogram that uses the module.

• If declared in a host subprogram, the variable may be accessed by that subprogram or subprograms
contained in that subprogram.

A device array may be an explicit-shape array, an allocatable array, or an assumed-shape dummy array. An
allocatable device variable has a dynamic lifetime, from when it is allocated until it is deallocated. Other device
variables have a lifetime of the entire application.

Attributes(constant)

A variable with the `constant` attributes is called a `device constant variable`. Device constant variables are
allocated in the device constant memory space. If declared in a module, the variable may be accessed by any
subprogram in that module and by any subprogram that uses the module. Device constant data may not be
assigned or modified in any device subprogram, but may be modified in host subprograms. Device constant
variables may not be allocatable, and have a lifetime of the entire application.

Attributes(shared)

A variable with the `shared` attribute is called a device shared variable or a `shared variable`. A shared
variable may only be declared in a device subprogram, and may only be accessed within that subprogram,
or by other device subprograms to which it is passed as an argument. A shared variable may not be data
initialized. A shared variable is allocated in the device shared memory for a thread block, and has a lifetime
of the thread block. It can be read or written by all threads in the block, though a write in one thread is only
guaranteed to be visible to other threads after the next call to the `SYNCTHREADS()` intrinsic.

Attributes(pinned)

A variable with the `pinned` attributes is called a `pinned variable`. A pinned variable must be an allocatable
array. When a pinned variable is allocated, it will be allocated in host pagelocked memory. The advantage of
using pinned variables is that copies from page-locked memory to device memory are faster than copies from
normal paged host memory. Some operating systems or installations may restrict the use, availability, or size of
page-locked memory; if the allocation in page-locked memory fails, the variable will be allocated in the normal
host paged memory.

Datatypes in Device Subprograms

The following intrinsic datatypes are allowed in device subprograms and device data:

<table>
<thead>
<tr>
<th>Type</th>
<th>Type Kind</th>
</tr>
</thead>
<tbody>
<tr>
<td>integer</td>
<td>1,2,4,8</td>
</tr>
<tr>
<td>logical</td>
<td>1,2,4,8</td>
</tr>
<tr>
<td>real</td>
<td>4,8</td>
</tr>
<tr>
<td>double precision</td>
<td>equivalent to real(kind=8)</td>
</tr>
</tbody>
</table>
Derived types may contain members with these intrinsic datatypes or other allowed derived types.

Predefined Variables in Device Subprograms

Device subprograms have access to block and grid indices and dimensions through several built-in read-only variables. These variables are of type `dim3`; the module `cudafor` defines the derived type `dim3` as follows:

```fortran
  type(dim3)
    integer(kind=4) :: x, y, z
  end type
```

These predefined variables, except for `warpsize`, are not accessible in host subprograms.

- The variable `threadidx` contains the thread index within its thread block; for one- or two-dimensional thread blocks, the `threadidx%x` and/or `threadidx%y` components have the value one.
- The variable `blockdim` contains the dimensions of the thread block; `blockdim` has the same value for all thread blocks in the same grid.
- The variable `blockidx` contains the block index within the grid; as with `threadidx`, for one-dimensional grids, `blockidx%x` has the value one. The value of `blockidx%y` is always one.
- The variable `griddim` contains the dimensions of the grid; the value of `griddim%z` is always one.
- The variable `warpsize` is declared to be type integer. Threads are executed in groups of 32, called `warps`; `warpsize` contains the number of threads in a warp.

Execution Configuration

A call to a kernel subroutine must specify an execution configuration. The execution configuration defines the dimensionality and extent of the grid and thread blocks that execute the subroutine. It may also specify a dynamic shared memory extent, in bytes, and a stream identifier, to support concurrent stream execution on the device.

A kernel subroutine call looks like this:

```fortran
  call kernel<<<grid,block[,bytes[,streamid]]>>>(arg1,arg2,\ldots)
```

where

- `grid` and `block` are either integer expressions (for one-dimensional grids and thread blocks), or are `type(dim3)`, for one- or two-dimensional grids and one-, two-, or three-dimensional thread blocks.
- If `grid` is `type(dim3)`, the value of `grid%z` must be one, and `block%x` and `block%y` must be equal to or greater than one.
- If `block` is `type(dim3)`, the value of each component must be equal to or greater than one, and the product of the component values must be less than or equal to 512.
- The value of `bytes` must be an integer; it specifies the number of bytes of shared memory to be allocated for each thread block, in addition to the statically allocated shared memory. This memory is used for the
assumed-size shared variables in the thread block; see Section 3.2.3. If not specified, its value is treated as zero.

- The value of \texttt{streamid} must be an integer greater than or equal to zero; it specifies the stream to which this call is associated.

Asynchronous Concurrent Execution

There are two components to asynchronous concurrent execution with CUDA Fortran.

Concurrent Host and Device Execution

When a host subprogram calls a kernel subroutine, the call actually returns to the host program before the kernel subroutine begins execution. The call can be treated as a *kernel launch* operation, where the launch actually corresponds to placing the kernel on a queue for execution by the device. In this way, the host can continue executing, including calling or queueing more kernels for execution on the device. By calling the runtime routine \texttt{cudaThreadSynchronize}, the host program can synchronize and wait for all previously launched or queued kernels.

Programmers must be careful when using concurrent host and device execution; in cases where the host program reads or modifies device or constant data, the host program should synchronize with the device to avoid erroneous results.

Concurrent Stream Execution

Operations involving the device, including kernel execution and data copies to and from device memory, are implemented using stream queues. An operation is placed at the end of the stream queue, and will only be initiated when all previous operations on that queue have been completed.

An application can manage more concurrency by using multiple streams. Each user-created stream manages its own queue; operations on different stream queues may execute out-of-order with respect to when they were placed on the queues, and may execute concurrently with each other.

The default stream, used when no stream identifier is specified, is stream zero; stream zero is special in that operations on the stream zero queue will begin only after all preceding operations on all queues are complete, and no subsequent operations on any queue begin until the stream zero operation is complete.

Kernel Loop Directive

CUDA Fortran allows automatic kernel generation and invocation from a region of host code containing one or more tightly nested loops. Launch configuration and mapping of the loop iterations onto the hardware is controlled and specified as part of the directive body using the familiar CUDA chevron syntax. As with any kernel, the launch is asynchronous. The program can use \texttt{cudaThreadSynchronize()} or CUDA Events to wait for the completion of the kernel.

The work in the loops specified by the directive is executed in parallel, across the thread blocks and grid; it is the programmer’s responsibility to ensure that parallel execution is legal and produces the correct answer. The one exception to this rule is a scalar reduction operation, such as summing the values in a vector or matrix. For these operations, the compiler handles the generation of the final reduction kernel, inserting synchronization into the kernel as appropriate.
Syntax

The general form of the kernel directive is:

```cuf
!$cuf kernel do[(n)] <<< grid, block >>>
```

The compiler maps the launch configuration specified by the grid and block values onto the outermost
n loops, starting at loop n and working out. The grid and block values can be an integer scalar or a
parenthesized list. Alternatively, using asterisks tells the compiler to choose a thread block shape and/or
compute the grid shape from the thread block shape and the loop limits. Loops which are not mapped onto
the grid and block values are run sequentially on each thread.

Example 1

```cuf
!$cuf kernel do(2) <<< (*,*), (32,4) >>>
do j = 1, m
   do i = 1, n
      a(i,j) = b(i,j) + c(i,j)
   end do
end do
```

In this example, the directive defines a two-dimensional thread block of size 32x4.

The body of the doubly-nested loop is turned into the kernel body:
ThreadIdx%x runs from 1 to 32 and is mapped onto the inner i loop.
ThreadIdx%y runs from 1 to 4 and is mapped onto the outer j loop.
The grid shape, specified as (*,*), is computed by the compiler and runtime by
dividing the loop trip counts n and m by the thread block size, so all iterations are
computed.

Example 2

```cuf
!$cuf kernel do <<< *, 256 >>>
do j = 1, m
   do i = 1, n
      a(i,j) = b(i,j) + c(i,j)
   end do
end do
```

Without an explicit n on the do, the schedule applies just to the outermost loop, that is,
the default value is 1.
In this case, only the outer j loop is run in parallel with a thread block size of 256.
The inner i dimension is run sequentially on each thread.

You might consider if the code in Example 2 would perform better if the two loops were interchanged.
Alternatively, you could specify a configuration like the following in which the threads read and write the
matrices in coalesced fashion.

```cuf
!$cuf kernel do(2) <<< *, (256,1) >>>
do j = 1, m
   do i = 1, n
      a(i,j) = b(i,j) + c(i,j)
   end do
end do
```
Example 3

In Example 2, the 256 threads in each block each do one element of the matrix addition. Further expansion of the work along the \(i \) direction and all work across the \(j \) dimension is handled by the mapping onto the grid dimensions.

To "unroll" more work into each thread, specify non-asterisk values for the grid, as illustrated here:

```cuf
!$cuf kernel do(2) <<< (1, *), (256, 1) >>>
do j = 1, m
  do i = 1, n
    a(i, j) = b(i, j) + c(i, j)
  end do
end do
```

Now the threads in a thread block handle all values in the \(i \) direction, in concert, incrementing by 256. One thread block is created for each \(j \). Specifically, the \(j \) loop is mapped onto the grid x-dimension, because the compiler skips over the constant 1 in the \(i \) loop grid size. In CUDA built-in language, \(gridDim\%x \) is equal to \(m \).

Restrictions on the CUF kernel directive

The following restrictions apply to CUF kernel directives:

- If the directive specifies \(n \) dimensions, it must be followed by at least that many tightly-nested DO loops.
- The tightly-nested DO loops must have invariant loop limits: the lower limit, upper limit, and increment must be invariant with respect to any other loop in the kernel \(do \).
- There can be no GOTO or EXIT statements within or between any loops that have been mapped onto the grid and block configuration values.
- The body of the loops may contain assignment statements, IF statements, loops, and GOTO statements.
- Only CUDA Fortran data types are allowed within the loops.
- CUDA Fortran intrinsic functions are allowed, if they are allowed in device code, but the device-specific intrinsics such as syncthreads, atomic functions, etc. are not.
- Subroutine and function calls to attributes(device) subprograms are allowed if they are in the same module as the code containing the directive.
- Arrays used or assigned in the loop must have the device attribute.
- Implicit loops and F90 array syntax are not allowed within the directive loops.
- Scalars used or assigned in the loop must either have the device attribute, or the compiler will make a device copy of that variable live for the duration of the loops, one for each thread. Except in the case of reductions; when a reduction has a scalar target, the compiler generates a correct sequence of synchronized operations to produce one copy either in device global memory or on the host.

Summation Example

The simplest directive form for performing a dot product on two device arrays takes advantage of the properties for scalar use outlined previously.
rsum = 0.0
!$cuf kernel do <<< *, * >>>
do i = 1, n
 rsum = rsum + x(i) * y(i)
end do

For reductions, the compiler recognizes the use of the scalar and generates just one final result.

This CUF kernel can be followed by another CUF kernel in the same subprogram:

!$cuf kernel do <<< *, * >>>
do i = 1, n
 rsum = x(i) * y(i)
 z(i) = rsum
end do

In this CUF kernel, the compiler recognizes rsum as a scalar temporary which should be allocated locally on every thread. However, use of rsum on the host following this loop is undefined.

Building a CUDA Fortran Program

CUDA Fortran is supported by the PGI Fortran compilers when the filename uses a CUDA Fortran extension. The .cuf extension specifies that the file is a free-format CUDA Fortran program; the .CUF extension may also be used, in which case the program is processed by the preprocessor before being compiled. To compile a fixed-format program, add the command line option –Mfixed. CUDA Fortran extensions can be enabled in any Fortran source file by adding the –Mcuda command line option.

Emulation Mode

PGI Fortran compilers support an emulation mode for program development on workstations or systems without a CUDA-enabled GPU and for debugging. To build a program using emulation mode, compile and link with the –Mcuda=emu command line option. In emulation mode, the device code is compiled for and runs on the host, allowing the programmer to use a host debugger.

It’s important to note that the emulation is far from exact. In particular, emulation mode may execute a single thread block at a time. This will not expose certain errors, such as memory races. In emulation mode, the host floating point units and intrinsics are used, which may produce slightly different answers than the device units and intrinsics.
Chapter 3. Reference

This chapter is the CUDA Fortran Language Reference.

New Subroutine and Function Attributes

CUDA Fortran adds new attributes to subroutines and functions. This chapter describes how to specify the new attributes, their meaning and restrictions.

A Subroutine may have the host, global, or device attribute, or may have both host and device attribute. A Function may have the host or device attribute, or both. These attributes are specified using the attributes(attr) prefix on the Subroutine or Function statement; if there is no attributes prefix on the subprogram statement, then default rules are used, as described in the following sections.

Host Subroutines and Functions

The host attribute may be explicitly specified on the Subroutine or Function statement as follows:

\[
\text{attributes(host) subroutine sub(...)}
\]

\[
\text{attributes(host) integer function func(...)}
\]

\[
\text{integer attributes(host) function func(...)}
\]

The host attributes prefix may be preceded or followed by any other allowable subroutine or function prefix specifiers (recursive, pure, elemental, function return datatype). A subroutine or function with the host attribute is called a host subroutine or function, or a host subprogram. A host subprogram is compiled for execution on the host processor. A subprogram with no attributes prefix has the host attribute by default.

Global Subroutines

The global attribute may be explicitly specified on the Subroutine statement as follows:

\[
\text{attributes(global) subroutine sub(...)}
\]

Functions may not have the global attribute. A subroutine with the global attribute is called a kernel subroutine. A kernel subroutine may not be recursive, pure, or elemental, so no other subroutine prefixes are allowed. A kernel subroutine is compiled as a kernel for execution on the device, to be called from a host routine using an execution configuration. A kernel subroutine may not be contained in another subroutine or function, and may not contain any other subprogram.
Variable Attributes

Device Subroutines and Functions

The device attribute may be explicitly specified on the Subroutine or Function statement as follows:

```fortran
attributes(device) subroutine sub(…)
datatype attributes(device) function func(…)
datatype attributes(device) function func(…)
```

A subroutine or function with the device attribute may not be recursive, pure, or elemental, so no other subroutine or function prefixes are allowed, except for the function return datatype. A subroutine or function with the device or kernel attribute is called a device subprogram. A device subprogram is compiled for execution on the device. A subroutine or function with the device attribute must appear within a Fortran module, and may only be called from device subprograms in the same module.

Restrictions on Device Subprograms

A subroutine or function with the device or global attribute must satisfy the following restrictions:

- It may not be recursive, nor have the recursive prefix on the subprogram statement.
- It may not be pure or elemental, nor have the pure or elemental prefix on the subprogram statement.
- It may not contain another subprogram.
- It may not be contained in another subroutine or function.

For more information, refer to “Device code,” on page 21.

Variable Attributes

CUDA Fortran adds new attributes for variables and arrays. This section describes how to specify the new attributes and their meaning and restriction.

Variables declared in a device subprogram may have one of four attributes: they may be declared to be in device global memory, in constant memory space, in the thread block shared memory, or in thread local memory.

Variables in modules may be declared to be in device global memory or constant memory space.

CUDA Fortran adds a new attribute for allocatable arrays in host memory; the array may be declared to be in pinned memory, that is, in page-locked host memory space. The advantage of using pinned memory is that transfers between the device and pinned memory are faster and can be asynchronous.

Device data

A variable or array with the device attribute is defined to reside in the device global memory. The device attribute can be specified with the `attributes` statement, or as an attribute on the type declaration statement. The following example declares two arrays, `a` and `b`, to be device arrays of size 100.

```fortran
real :: a(100)
attributes(device) :: a
real, device :: b(100)
```
These rules apply to device data:

- An allocatable device array dynamically allocates device global memory.
- Device variables and arrays may not have the Pointer or Target attributes.
- Device variables and arrays may appear in modules, but may not be in a Common block or an Equivalence statement.
- Members of a derived type may not have the device attribute unless they are allocatable.
- Device variables and arrays may be passed as actual arguments to host and device subprograms; in that case, the subprogram interface must be explicit (in the Fortran sense), and the matching dummy argument must also have the device attribute.
- Device variables and arrays declared in a host subprogram cannot have the \texttt{Save} attribute.

In host subprograms, device data may only be used in the following manner:

- In declaration statements
- In Allocate and Deallocate statements
- As an argument to the \texttt{Allocated} intrinsic function
- As the source or destination in a data transfer assignment statement
- As an actual argument to a kernel subroutine
- As an actual argument to another host subprogram or runtime API call
- As a dummy argument in a host subprogram

A device array may have the allocatable attribute, or may have adjustable extent.

\textbf{Constant data}

A variable or array with the constant attribute is defined to reside in the device constant memory space. The constant attribute can be specified with the \texttt{attributes} statement, or as an attribute on the type declaration statement. The following example declares two arrays, \texttt{c} and \texttt{d}, to be constant arrays of size 100.

\begin{verbatim}
real :: c(100)
attributes(constant) :: c
real, constant :: d(100)
\end{verbatim}

These rules apply to constant data:

- Constant data may not have the Pointer, Target, or Allocatable attributes.
- Constant variables and arrays may appear in modules, but may not be in a Common block or an Equivalence statement.
- Members of a derived type may not have the constant attribute.
- Arrays with the constant attribute must have fixed size.
• Constant variables and arrays may be passed as actual arguments to host and device subprograms, as long as the subprogram interface is explicit, and the matching dummy argument also has the constant attribute.

• Within device subprograms, variables and arrays with the constant attribute may not be assigned or modified.

• Within host subprograms, variables and arrays with the constant attribute may be read and written.

In host subprograms, data with the constant attribute may only be used in the following manner:

• In declaration statements

• As the source or destination in a data transfer assignment statement

• As an actual argument to another host subprogram

• As a dummy argument in a host subprogram

Shared data

A variable or array with the shared attribute is defined to reside in the shared memory space of a thread block. A shared variable or array may only be declared and used inside a device subprogram. The shared attribute can be specified with the attributes statement, or as an attribute on the type declaration statement. The following example declares two arrays, \(s \) and \(t \), to be shared arrays of size 100.

```fortran
real :: c(100)
attributes(shared) :: c
real, shared :: d(100)
```

These rules apply to shared data:

• Shared data may not have the Pointer, Target, or Allocatable attributes.

• Shared variables may not be in a Common block or Equivalence statement.

• Members of a derived type may not have the shared attribute.

• Shared variables and arrays may be passed as actual arguments to from a device subprogram to another device subprogram, as long as the interface is explicit and the matching dummy argument has the shared attribute.

Shared arrays that are not dummy arguments may be declared as assumed-size arrays; that is, the last dimension of a shared array may have an asterisk as its upper bound:

```fortran
real, shared :: x(*)
```

Such an array has special significance. Its size is determined at run time by the call to the kernel. When the kernel is called, the value of the \(\text{bytes} \) argument in the execution configuration is used to specify the number of bytes of shared memory that is dynamically allocated for each thread block. This memory is used for the assumed-size shared memory arrays in that thread block; if there is more than one assumed-size shared memory array, they are all implicitly equivalenced, starting at the same shared memory address. Programmers must take this into account when coding.

Shared arrays may be declared as Fortran automatic arrays. For automatic arrays, the bounds are declared as an expression containing constants, parameters, blockdim variables, and integer arguments passed in by
value. The allocation of automatic arrays also comes from the dynamic area specified via the chevron launch configuration. If more than one automatic array is declared, the compiler and runtime manage the offsets into the dynamic area. Programmers must provide a sufficient number of bytes in the chevron launch configuration shared memory value to cover all automatic arrays declared in the global subroutine.

```
attributes(global) subroutine sub(A, n, 
  integer, value :: n, nb 
  real, shared :: s(nb*blockdim%x,nb)
```

If a shared array is not a dummy argument and not assumed-size or automatic, it must be fixed size. In this case, the allocation for the shared array does not come from the dynamically allocated shared memory area specified in the launch configuration, but rather it is declared statically within the function. If the global routine uses only fixed size shared arrays, or none at all, no shared memory amount needs to be specified at the launch.

Value dummy arguments

In device subprograms, following the rules of Fortran, dummy arguments are passed by default by reference. This means the actual argument must be stored in device global memory, and the address of the argument is passed to the subprogram. Scalar arguments can be passed by value, as is done in C, by adding the value attribute to the variable declaration.

```
attributes(global) subroutine madd( a, b, n )
  real, dimension(n,n) :: a, b 
  integer, value :: n
```

In this case, the value of n can be passed from the host without needing to reside in device memory. The variable arrays corresponding to the dummy arguments a and b must be set up before the call to reside on the device.

Pinned arrays

An allocatable array with the pinned attribute will be allocated in special page-locked host memory, when such memory is available. An array with the pinned attribute may be declared in a module or in a host subprogram. The pinned attribute can be specified with the `attributes` statement, or as an attribute on the type declaration statement. The following example declares two arrays, p and q, to be pinned allocatable arrays.

```
real :: p(:)
allocatable :: p
attributes(pinned) :: p 
real, allocatable, pinned :: q(:)
```

Pinned arrays may be passed as arguments to host subprograms regardless of whether the interface is explicit, or whether the dummy argument has the pinned and allocatable attributes. Where the array is deallocated, the declaration for the array must still have the pinned attribute, or the deallocation may fail.

Allocating Device and Pinned Arrays

This section describes extensions to the Allocate statement, specifically for dynamically allocating device arrays and host pinned arrays, and other supported methods for allocating device memory.
Allocating Device Memory

Device arrays can have the allocatable attribute. These arrays are dynamically allocated in host subprograms using the Allocate statement, and dynamically deallocated using the Deallocate statement. If a device array declared in a host subprogram does not have the Save attribute, it will be automatically deallocated when the subprogram returns.

```fortran
real, allocatable, device :: b(:)
allocate(b(5024),stat=istat)
...  
if(allocated(b)) deallocate(b)
```

Scalar variables can be allocated on the device using the Fortran 2003 allocatable scalar feature. To use these, declare and initialize the scalar on the host as:

```fortran
integer, allocatable, device :: ndev
allocate(ndev)
ndev = 100
```

The language also supports the ability to create the equivalent of automatic and local device arrays without using the allocate statement. These arrays will also have a lifetime of the subprogram as is usual with the Fortran language:

```fortran
subroutine vfunc(a,c,n)
    real, device :: adev(n)
    real, device :: atmp(4)
    ...
end subroutine vfunc   ! adev and atmp are deallocated
```

Allocating Device Memory Using Runtime Routines

For programmers comfortable with the CUDA C programming environment, Fortran interfaces to the CUDA memory management runtime routines are provided. These functions return memory which will bypass certain Fortran allocatable properties such as automatic deallocation, and thus the arrays are treated more like C malloc’ed areas. Mixing standard Fortran allocate/deallocate with the runtime Malloc/Free for a given array is not supported.

The cudaMalloc function can be used to allocate single-dimensional arrays of the supported intrinsic datatypes, and cudaFree can be used to free it:

```fortran
real, allocatable, device :: v(:)
istat = cudaMalloc(v, 100)
...  
istat = cudaFree(v)
```

For a complete list of the memory management runtime routines, refer to “Memory Management,” on page 39.

Allocating Pinned Memory

Allocatable arrays with the pinned attribute are dynamically allocated using the Allocate statement. The compiler will generate code to allocate the array in host page-locked memory, if available. If no such memory
space is available, or if it is exhausted, the compiler allocates the array in normal paged host memory. Otherwise, pinned allocatable arrays work and act like any other allocatable array on the host.

```fortran
real, allocatable, pinned :: p(:)
allocate(p(5000),stat=istat)
...
if(allocated(p)) deallocate(p)
```

To determine whether or not the allocation from page-locked memory was successful, an additional PINNED keyword is added to the allocate statement. It returns a logical success value.

```fortran
logical plog
allocate(p(5000), stat=istat, pinned=plog)
if (.not. plog) then
  ...
```

Data transfer between host and device memory

This section provides methods to transfer data between the host and device memory.

Data Transfer Using Assignment Statements

You can copy variables and arrays from the host memory to the device memory by using simple assignment statements in host subprograms.

- An assignment statement where the left hand side is a device variable or device array or array section, and the right hand side is a host variable or host array or array section, copies data from the host memory to the device global memory.

- An assignment statement where the left hand side is a host variable or host array or array section, and the right hand side is a device variable or device array or array section, copies data from the device global memory to the host memory.

- An assignment statement with a device variable or device array or array section on both sides of the assignment statement copies data between two device variables or arrays.

Similarly, you can use simple assignment statements to copy or assign variables or arrays with the constant attribute.

Note

Using assignment statements to read or write device or constant data implicitly uses CUDA stream zero. This means such data copies are synchronous, meaning the data copy waits until all previous kernels and data copies complete.

Implicit Data Transfer in Expressions

Some limited data transfer can be enclosed within expressions. In general, the rule of thumb is all arithmetic or operations must occur on the host, which normally only allows one device array to appear on the right-hand-side of an expression. Temporary arrays are generated to accommodate the host copies of device data as needed. For instance, if a, b, and c are conforming host arrays, and adev, bdev, and cdev are conforming device arrays, the following expressions are legal:
The following expressions are not legal as they either promote a false impression of where the actual computation occurs, or would be more efficient written in another way, or both:

```
c = adev + bdev
adev = adev + a
b = sqrt(adev)
```

Elemental transfers are supported by the language but will perform poorly. Array slices are also supported, and their performance is dependent on the size of the slice, amount of contiguous data in the slices, and the implementation.

Data Transfer Using Runtime Routines

For programmers comfortable with the CUDA C programming environment, Fortran interfaces to the CUDA memory management runtime routines are provided. These functions can transfer data either from the host to device, device to host, or from one device array to another.

The `cudaMemcpy` function can be used to copy data between the host and the GPU:

```
real, device :: wrk(1024)
real cur(512)
istat = cudaMemcpy(wrk, cur, 512)
```

For those familiar with the CUDA C routines, the kind parameter to the Memcpy routines is optional in Fortran because the attributes of the arrays are explicitly declared. Counts expressed in arguments to the Fortran runtime routines are expressed in terms of data type elements, not bytes.

For a complete list of memory management runtime routines, refer to “Memory Management,” on page 39.

Invoking a kernel subroutine

A call to a kernel subroutine must give the execution configuration for the call. The execution configuration gives the size and shape of the grid and thread blocks that execute the function as well as the amount of shared memory to use for assumed-size shared memory arrays and the associated stream.

The execution configuration is specified after the subroutine name in the call statement; it has the form:

```
<<< grid, block, bytes, stream >>>
```

- **grid** is an integer, or of type `(dim3)`. If it is `(dim3)`, the value of `grid%z` must be one. The product `grid%x*grid%y` gives the number of thread blocks to launch. If grid is an integer, it is converted to `(dim3(grid,1,1)). bl`

- **block** is an integer, or of type `(dim3)`. If it is `(dim3)`, the number of threads per thread block is `block%x*block%y*block%z`, which must be less than the maximum supported by the device. If `block` is an integer, it is converted to `(dim3(block,1,1))`.

```
• bytes is optional; if present, it must be a scalar integer, and specifies the number of bytes of shared memory to be allocated for each thread block to use for assumed-size shared memory arrays. For more information, refer to “Shared data,” on page 16. If not specified, the value zero is used.

• stream is optional; if present, it must be an integer, and have a value of zero, or a value returned by a call to cudaStreamCreate. See Section 4.5 on page 41. It specifies the stream to which this call is enqueued.

For instance, a kernel subroutine

\[
\text{attributes(global) subroutine sub( a )}
\]

can be called like:

\[
\text{call sub <<DG, DB, bytes >>= ( A )}
\]

The function call fails if the grid or block arguments are greater than the maximum sizes allowed, or if bytes is greater than the shared memory available. Shared memory may also be consumed by fixed-sized shared memory declarations in the kernel and for other dedicated uses, such as function arguments and execution configuration arguments.

### Device code

#### Datatypes allowed

Variables and arrays with the device, constant, or shared attributes, or declared in device subprograms, are limited to the types described in this section. They may have any of the intrinsic datatypes in the following table.

<table>
<thead>
<tr>
<th>Type</th>
<th>Type Kind</th>
</tr>
</thead>
<tbody>
<tr>
<td>integer</td>
<td>1,2,4(default),8</td>
</tr>
<tr>
<td>logical</td>
<td>1,2,4(default),8</td>
</tr>
<tr>
<td>real</td>
<td>4(default),8</td>
</tr>
<tr>
<td>double precision</td>
<td>equivalent to (\text{real(kind=8)})</td>
</tr>
<tr>
<td>complex</td>
<td>4(default),8</td>
</tr>
<tr>
<td>character(len=1)</td>
<td>1 (default)</td>
</tr>
</tbody>
</table>

Additionally, they may be of derived type, where the members of the derived type have one of the allowed intrinsic datatypes, or another allowed derived type.

The system module \(\text{cudafor}\) includes definitions of the derived type \(\text{dim3}\), defined as

\[
\text{type(dim3)}
\]
\[
\quad \text{integer(kind=4) :: x,y,z}
\]
\[
\text{end type}
\]
Built-in variables

The system module cudafor declares several predefined variables. These variables are read-only. They are declared as follows:

```fortran
 type(dim3) :: threadidx, blockdim, blockidx, griddim
 integer(4) :: warpsize
```

- The variable `threadidx` contains the thread index within its thread block; for one- or two-dimensional thread blocks, the `threadidx%y` and/or `threadidx%z` components have the value one.
- The variable `blockdim` contains the dimensions of the thread block; `blockdim` has the same value for all threads in the same grid; for one- or two-dimensional thread blocks, the `blockdim%y` and/or `blockdim%z` components have the value one.
- The variable `blockidx` contains the block index within the grid; as with `threadidx`, for one-dimensional grids, `blockidx%y` has the value one. The value of `blockidx%z` is always one. The value of `blockidx` is the same for all threads in the same thread block.
- The variable `griddim` contains the dimensions of the grid; the value of `griddim%z` is always one. The value of `griddim` is the same for all threads in the same grid; the value of `griddim%y` is one for one-dimensional grids.
- The variables `threadidx`, `blockdim`, `blockidx`, and `griddim` are available only in device subprograms.
- The variable `warpsize` contains the number of threads in a warp. It has constant value, currently defined to be 32.

Fortran Intrinsics

This section lists the Fortran intrinsic functions allowed in device subprograms.

**Table 3.2. Fortran Numeric and Logical Intrinsics**

<table>
<thead>
<tr>
<th>Name</th>
<th>Argument Datatypes</th>
<th>Name</th>
<th>Argument Datatypes</th>
</tr>
</thead>
<tbody>
<tr>
<td>abs</td>
<td>integer, real, complex</td>
<td>int</td>
<td>integer, real, complex</td>
</tr>
<tr>
<td>aimag</td>
<td>complex</td>
<td>logical</td>
<td>logical</td>
</tr>
<tr>
<td>aint</td>
<td>real</td>
<td>max</td>
<td>integer, real</td>
</tr>
<tr>
<td>anint</td>
<td>real</td>
<td>min</td>
<td>integer, real</td>
</tr>
<tr>
<td>ceiling</td>
<td>real</td>
<td>mod</td>
<td>integer, real</td>
</tr>
<tr>
<td>cmplx</td>
<td>real or (real,real)</td>
<td>modulo</td>
<td>integer, real</td>
</tr>
<tr>
<td>conjg</td>
<td>complex</td>
<td>nint</td>
<td>real</td>
</tr>
<tr>
<td>dim</td>
<td>integer, real</td>
<td>real</td>
<td>integer, real, complex</td>
</tr>
<tr>
<td>floor</td>
<td>real</td>
<td>sign</td>
<td>integer, real</td>
</tr>
</tbody>
</table>
### Table 3.3. Fortran Mathematical Intrinsics

<table>
<thead>
<tr>
<th>Name</th>
<th>Argument Datatypes</th>
</tr>
</thead>
<tbody>
<tr>
<td>acos</td>
<td>real</td>
</tr>
<tr>
<td>asin</td>
<td>real</td>
</tr>
<tr>
<td>atan</td>
<td>real</td>
</tr>
<tr>
<td>atan2</td>
<td>(real, real)</td>
</tr>
<tr>
<td>cos</td>
<td>real, complex</td>
</tr>
<tr>
<td>cosh</td>
<td>real</td>
</tr>
<tr>
<td>exp</td>
<td>real, complex</td>
</tr>
<tr>
<td>log</td>
<td>real, complex</td>
</tr>
<tr>
<td>log10</td>
<td>real</td>
</tr>
<tr>
<td>sin</td>
<td>real, complex</td>
</tr>
<tr>
<td>sinh</td>
<td>real</td>
</tr>
<tr>
<td>sqrt</td>
<td>real, complex</td>
</tr>
<tr>
<td>tan</td>
<td>real</td>
</tr>
<tr>
<td>tanh</td>
<td>real</td>
</tr>
</tbody>
</table>

### Table 3.4. Fortran Numeric Inquiry Intrinsics

<table>
<thead>
<tr>
<th>Name</th>
<th>Argument Datatypes</th>
</tr>
</thead>
<tbody>
<tr>
<td>bit_size</td>
<td>integer</td>
</tr>
<tr>
<td>digits</td>
<td>integer, real</td>
</tr>
<tr>
<td>epsilon</td>
<td>real</td>
</tr>
<tr>
<td>huge</td>
<td>integer, real</td>
</tr>
<tr>
<td>maxexponent</td>
<td>real</td>
</tr>
<tr>
<td>minexponent</td>
<td>real</td>
</tr>
<tr>
<td>precision</td>
<td>real, complex</td>
</tr>
<tr>
<td>radix</td>
<td>integer, real</td>
</tr>
<tr>
<td>range</td>
<td>integer, real, complex</td>
</tr>
<tr>
<td>selected_int_kind</td>
<td>integer</td>
</tr>
<tr>
<td>selected_real_kind</td>
<td>(integer, integer)</td>
</tr>
<tr>
<td>tiny</td>
<td>real</td>
</tr>
</tbody>
</table>

### Table 3.5. Fortran Bit Manipulation Intrinsics

<table>
<thead>
<tr>
<th>Name</th>
<th>Argument Datatypes</th>
</tr>
</thead>
<tbody>
<tr>
<td>btest</td>
<td>integer</td>
</tr>
<tr>
<td>iand</td>
<td>integer</td>
</tr>
<tr>
<td>ibclr</td>
<td>integer</td>
</tr>
<tr>
<td>ibits</td>
<td>integer</td>
</tr>
<tr>
<td>ibset</td>
<td>integer</td>
</tr>
<tr>
<td>ieor</td>
<td>integer</td>
</tr>
<tr>
<td>ior</td>
<td>integer</td>
</tr>
<tr>
<td>ishft</td>
<td>integer</td>
</tr>
<tr>
<td>ishftc</td>
<td>integer</td>
</tr>
<tr>
<td>leadz</td>
<td>integer</td>
</tr>
<tr>
<td>mvbits</td>
<td>integer</td>
</tr>
<tr>
<td>not</td>
<td>integer</td>
</tr>
<tr>
<td>popcnt</td>
<td>integer</td>
</tr>
<tr>
<td>poppar</td>
<td>integer</td>
</tr>
</tbody>
</table>

### Table 3.6. Fortran Reduction Intrinsics

<table>
<thead>
<tr>
<th>Name</th>
<th>Argument Datatypes</th>
</tr>
</thead>
<tbody>
<tr>
<td>all</td>
<td>logical</td>
</tr>
<tr>
<td>any</td>
<td>logical</td>
</tr>
<tr>
<td>count</td>
<td>logical</td>
</tr>
<tr>
<td>minloc</td>
<td>integer, real</td>
</tr>
<tr>
<td>minval</td>
<td>integer, real</td>
</tr>
<tr>
<td>product</td>
<td>integer, real, complex</td>
</tr>
</tbody>
</table>
New Intrinsic Functions

This section describes the new intrinsic functions and subroutines supported in device subprograms.

Synchronization Functions

The synchronization functions control the synchronization of various threads during execution of thread blocks.

- `syncthreads`  
- `syncthreads_count`  
- `syncthreads_and`  
- `syncthreads_or`  
- `threadfence`  
- `threadfence_block`  
- `threadfence_system`

For detailed information on these functions, refer to “Thread Management,” on page 35.

SYNCTHREADS

The `syncthreads` intrinsic subroutine acts as a barrier synchronization for all threads in a single thread block; it has no arguments:

```c
void syncthreads()
```

Sometimes threads within a block access the same addresses in shared or global memory, thus creating potential read-after-write, write-after-read, or write-after-write hazards for some of these memory accesses. To avoid these potential issues, use `syncthreads()` to specify synchronization points in the kernel. This intrinsic acts as a barrier at which all threads in the block must wait before any thread is allowed to proceed. Threads within a block cooperate and share data by synchronizing their execution to coordinate memory accesses.

Each thread in a thread block pauses at the `syncthreads` call until all threads have reached that call. If any thread in a thread block issues a call to `syncthreads`, all threads must also reach and execute the same call statement, or the kernel fails to complete correctly.

SYNCTHREADS_AND

```c
integer syncthreads_and(int_value)
```

`syncthreads_and`, like `syncthreads`, acts as a barrier at which all threads in the block must wait before any thread is allowed to proceed. In addition, `syncthreads_and` evaluates the integer argument `int_value` for all threads of the block and returns non-zero if and only if `int_value` evaluates to non-zero for all of them.
**SYNCTHREADS_COUNT**

```c
integer syncthreads_count(int_value)
```

`syncthreads_count`, like `syncthreads`, acts as a barrier at which all threads in the block must wait before any thread is allowed to proceed. In addition, `syncthreads_count` evaluates the integer argument `int_value` for all threads of the block and returns the number of threads for which `int_value` evaluates to non-zero.

**SYNCTHREADS_OR**

```c
integer syncthreads_or(int_value)
```

`syncthreads_or`, like `syncthreads`, acts as a barrier at which all threads in the block must wait before any thread is allowed to proceed. In addition, `syncthreads_or` evaluates the integer argument `int_value` for all threads of the block and returns non-zero if and only if `int_value` evaluates to non-zero for any of them.

**Memory Fences**

In general, when a thread issues a series of writes to memory in a particular order, other threads may see the effects of these memory writes in a different order. You can use `threadfence()`, `threadfence_block()`, and `threadfence_system()` to create a **memory fence** to enforce ordering.

For example, suppose you use a kernel to compute the sum of an array of N numbers in one call. Each block first sums a subset of the array and stores the result in global memory. When all blocks are done, the last block done reads each of these partial sums from global memory and sums them to obtain the final result. To determine which block is finished last, each block atomically increments a counter to signal that it is done with computing and storing its partial sum. If no fence is placed between storing the partial sum and incrementing the counter, the counter might increment before the partial sum is stored.

**THREADFENCE**

```c
void threadfence()
```

`threadfence` acts as a memory fence, creating a wait. Typically, when a thread issues a series of writes to memory in a particular order, other threads may see the effects of these memory writes in a different order. `threadfence()` is one method to enforce a specific order. All global and shared memory accesses made by the calling thread prior to `threadfence()` are visible to:

- All threads in the thread block for shared memory accesses
- All threads in the device for global memory accesses

**THREADFENCE_BLOCK**

```c
void threadfence_block()
```

`threadfence_block` acts as a memory fence, creating a wait until all global and shared memory accesses made by the calling thread prior to `threadfence_block()` are visible to all threads in the thread block for all accesses.
THREADFENCE_SYSTEM

```c
void threadfence_system()
```

`threadfence_system` acts as a memory fence, creating a wait until all global and shared memory accesses made by the calling thread prior to `threadfence_system()` are visible to:

- All threads in the thread block for shared memory accesses
- All threads in the device for global memory accesses
- Host threads for page-locked host memory accesses

`threadfence_system()` is only supported by devices of compute capability 2.0 or higher.

Warp-Vote Operations

Warp-vote operations are only supported by devices with compute capability 1.2 and higher. Each of these functions has a single argument.

### ALLTHREADS

The `allthreads` function is a warp-vote operation with a single scalar logical argument:

```c
if(allthreads(a(i)<0.0)) allneg = .true.
```

The function `allthreads` evaluates its argument for all threads in the current warp. The value of the function is `.true.` only if the value of the argument is `.true.` for all threads in the warp.

### ANYTHREAD

The `anythread` function is a warp-vote operation with a single scalar logical argument:

```c
if(anythread(a(i)<0.0)) allneg = .true.
```

The function `anythread` evaluates its argument for all threads in the current warp. The value of the function is `.false.` only if the value of the argument is `.false.` for all threads in the warp.

### BALLOT

The `ballot` function is a warp-vote operation with a single integer argument:

```c
unsigned integer ballot(int_value)
```

The function `ballot` evaluates the argument `int_value` for all threads of the warp and returns an integer whose Nth bit is set if and only if `int_value` evaluates to non-zero for the Nth thread of the warp.

This function is only supported by devices of compute capability 2.0.

**Example:**

```c
if(ballot(int_value)) allneg = .true.
```
Atomic Functions

The atomic functions read and write the value of their first operand, which must be a variable or array element in shared memory (with the shared attribute) or in device global memory (with the device attribute). Atomic functions are only supported by devices with compute capability 1.1 and higher. Compute capability 1.2 or higher is required if the first argument has the shared attribute.

The atomic functions return correct values even if multiple threads in the same or different thread blocks try to read and update the same location without any synchronization.

Arithmetic and Bitwise Atomic Functions

These atomic functions read and return the value of the first argument. They also combine that value with the value of the second argument, depending on the function, and store the combined value back to the first argument location. Both arguments must be of type integer(kind=4).

Note

The return value for each of these functions is the first argument, mem.

These functions are:

Table 3.8. Arithmetic and Bitwise Atomic Functions

<table>
<thead>
<tr>
<th>Function</th>
<th>Additional Atomic Update</th>
</tr>
</thead>
<tbody>
<tr>
<td>atomicadd( mem, value )</td>
<td>mem = mem + value</td>
</tr>
<tr>
<td>atomicsub( mem, value )</td>
<td>mem = mem - value</td>
</tr>
<tr>
<td>atomicmax( mem, value )</td>
<td>mem = max(mem,value)</td>
</tr>
<tr>
<td>atomicmin( mem, value )</td>
<td>mem = min(mem,value)</td>
</tr>
<tr>
<td>atomicand( mem, value )</td>
<td>mem = iand(mem,value)</td>
</tr>
<tr>
<td>atomicor( mem, value )</td>
<td>mem = ior(mem,value)</td>
</tr>
<tr>
<td>atomicxor( mem, value )</td>
<td>mem = ieor(mem,value)</td>
</tr>
<tr>
<td>atomicexch( mem, value )</td>
<td>mem = value</td>
</tr>
</tbody>
</table>

Counting Atomic Functions

These atomic functions read and return the value of the first argument. They also compare the first argument with the second argument, and stores a new value back to the first argument location, depending on the result of the comparison. These functions are intended to implement circular counters, counting up to or down from a maximum value specified in the second argument. Both arguments must be of type integer(kind=4).

Note

The return value for each of these functions is the first argument, mem.

These functions are:
Table 3.9. Counting Atomic Functions

<table>
<thead>
<tr>
<th>Function</th>
<th>Additional Atomic Update</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>atomicinc(mem, imax)</code></td>
<td>if (mem&lt;imax) then</td>
</tr>
<tr>
<td></td>
<td>mem = mem+1</td>
</tr>
<tr>
<td></td>
<td>else</td>
</tr>
<tr>
<td></td>
<td>mem = 0</td>
</tr>
<tr>
<td></td>
<td>endif</td>
</tr>
<tr>
<td><code>atomicdec(mem, imax)</code></td>
<td>if (mem&lt;imax .and. mem&gt;0) then</td>
</tr>
<tr>
<td></td>
<td>mem = mem-1</td>
</tr>
<tr>
<td></td>
<td>else</td>
</tr>
<tr>
<td></td>
<td>mem = imax</td>
</tr>
<tr>
<td></td>
<td>endif</td>
</tr>
</tbody>
</table>

Compare and Swap Atomic Function

This atomic function reads and returns the value of the first argument. It also compares the first argument with the second argument, and atomically stores a new value back to the first argument location if the first and second argument are equal. All three arguments must be of type integer(kind=4).

Note

The return value for this function is the first argument, `mem`.

The function is:

Table 3.10. Compare and Swap Atomic Function

<table>
<thead>
<tr>
<th>Function</th>
<th>Additional Atomic Update</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>atomiccas(mem,comp,val)</code></td>
<td>if (mem == comp) then</td>
</tr>
<tr>
<td></td>
<td>mem = val</td>
</tr>
<tr>
<td></td>
<td>endif</td>
</tr>
</tbody>
</table>

Restrictions

This section lists restrictions on statements and features that can appear in device subprograms.

- Objects with the Pointer and Allocatable attribute are not allowed.
- Automatic arrays must be fixed size.
- Optional arguments are not allowed.
- Objects with character type must have `LEN=1`; character substrings are not supported.
- Recursive subroutines and functions are not allowed.
- STOP and PAUSE statements are not allowed.
- Most Input/Output statements are not allowed at all: READ, FORMAT, NAMELIST, OPEN, CLOSE, BACKSPACE, REWIND, ENDFILE, INQUIRE.
- List-directed PRINT and WRITE statements to the default unit may be used when compiling for compute capability 2.0 and higher; all other uses of PRINT and WRITE are disallowed.
• Alternate return specifications are not allowed.
• ENTRY statements are not allowed.
• Floating point exception handling is not supported.
• Fortran intrinsic functions not listed in Section 3.6.3 are not supported.
• Subroutine and function calls are supported only if they can be inlined.
• Cray pointers are not supported.

PRINT and WRITE Statements

When targeting Compute Capability 2.0 and higher, list-directed PRINT or WRITE statements to the default output unit (PRINT * or WRITE(*,*)) may be used. Because of the way Fortran input/output is implemented, the output for PRINT or WRITE statements may be interleaved between different threads for each item on the PRINT or WRITE statement. That is, if a device routine contains a PRINT statement, such as this one:

```
print *, 'index = ', blockIdx%x, threadIdx%x
```

then two different threads, in the same thread block or in different thread blocks, may print out the first item, the character string 'index = ', one after the other, then the second item, the value of blockIdx%x, then the third item, threadIdx%x, and finally the end-of-line.

Unlike the CUDA C printf implementation, which prints out a whole line for each thread, there is no indication of which thread prints out which item in which order.

Tip

Use conditionals around PRINT statements to circumvent this current behavior.

Host code

Host subprograms may use intrinsic functions, such as the new sizeof intrinsic function.

SIZEOF Intrinsic

A call to sizeof(A), where A is a variable or expression, returns the number of bytes required to hold the value of A.

```
integer(kind=4) :: i, j
j = sizeof(i) ! this assigns the value 4 to j
```

Fortran Modules

CUDA Fortran Modules are available to help programmers access features of the CUDA runtime environment, which might otherwise not be accessible from Fortran without significant effort from the programmer. These modules might be either device modules or host modules.

Device Modules

PGI provides a device module which allows access and interfaces to many of the CUDA device built-in routines.
To access this module, do one of the following:

- Add this line to your Fortran program:

  ```fortran
 use cudadevice
  ```

- Add this line to your C program:

  ```c
 #include <cudadevice.h>
  ```

You can use these routines in CUDA Fortran global and device subprograms, in CUF kernels, and in PGI Accelerator compute regions in Fortran as well as in C. Further, the PGI compilers come with implementations of these routines for host code, though these implementations are not specifically optimized for the host.

Table 3.11 lists the CUDA built-in routines that are available:

<table>
<thead>
<tr>
<th>_brev</th>
<th>_brevll</th>
<th>clock</th>
<th>clock64</th>
</tr>
</thead>
<tbody>
<tr>
<td>_clz</td>
<td>_clzll</td>
<td>_cosf</td>
<td>_dadd_rd</td>
</tr>
<tr>
<td>_dadd_rn</td>
<td>_dadd_ru</td>
<td>_dadd_rz</td>
<td>_ddiv_rd</td>
</tr>
<tr>
<td>_ddiv_rn</td>
<td>_ddiv_ru</td>
<td>_ddiv_rz</td>
<td>_dmul_rd</td>
</tr>
<tr>
<td>_dmul_rn</td>
<td>_dmul_ru</td>
<td>_dmul_rz</td>
<td>_double2float_rd</td>
</tr>
<tr>
<td>_double2float_rn</td>
<td>_double2float_ru</td>
<td>_double2float_rz</td>
<td>_double2hiint</td>
</tr>
<tr>
<td>_double2int_rd</td>
<td>_double2int_rn</td>
<td>_double2int_rz</td>
<td>_double2int_rz</td>
</tr>
<tr>
<td>_double2ll_rd</td>
<td>_double2ll_ru</td>
<td>_double2ll_rz</td>
<td>_double2ll_rz</td>
</tr>
<tr>
<td>_double2uint_rd</td>
<td>_double2uint_rn</td>
<td>_double2uint_rz</td>
<td>_double2uint_rz</td>
</tr>
<tr>
<td>_double2ull_rd</td>
<td>_double2ull_rn</td>
<td>_double2ull_rz</td>
<td>_double2ull_rz</td>
</tr>
<tr>
<td>_double_as_long_long</td>
<td>_drcp_rd</td>
<td>_drcp_rn</td>
<td>_drcp_ru</td>
</tr>
<tr>
<td>_drcp_rz</td>
<td>_dsqrt_rd</td>
<td>_dsqrt_rn</td>
<td>_dsqrt_ru</td>
</tr>
<tr>
<td>_dsqrt_rz</td>
<td>_exp10f</td>
<td>_expf</td>
<td>_fadd_rd</td>
</tr>
<tr>
<td>_fadd_rn</td>
<td>_fadd_ru</td>
<td>_fadd_rz</td>
<td>_fdiv_rz</td>
</tr>
<tr>
<td>_fdiv_rn</td>
<td>_fdiv_ru</td>
<td>_fdiv_rz</td>
<td>_fdivide</td>
</tr>
<tr>
<td>fdivide</td>
<td>_fdivide</td>
<td>_fss</td>
<td>_fssll</td>
</tr>
<tr>
<td>_float2half_rn</td>
<td>_float2int_rd</td>
<td>_float2int_rn</td>
<td>_float2int_rn</td>
</tr>
<tr>
<td>_float2int_rz</td>
<td>_float2ll_rd</td>
<td>_float2ll_rn</td>
<td>_float2ll_rn</td>
</tr>
<tr>
<td>_float2ll_rz</td>
<td>_float_as_int</td>
<td>_fma_rd</td>
<td>_fma rn</td>
</tr>
<tr>
<td>_fma_ru</td>
<td>_fma_rz</td>
<td>_fma_rdn</td>
<td>_fma_rn</td>
</tr>
<tr>
<td>_fmaf_ru</td>
<td>_fmaf_rz</td>
<td>_fmul_rd</td>
<td>_fmul_rn</td>
</tr>
<tr>
<td>_fmul_ru</td>
<td>_fmul_rz</td>
<td>_frcp_rd</td>
<td>_frcp_rn</td>
</tr>
<tr>
<td>_frcp_ru</td>
<td>_frcp_rz</td>
<td>_fsqrt_rd</td>
<td>_fsqrt_rn</td>
</tr>
<tr>
<td>_fsqrt_ru</td>
<td>_fsqrt_rz</td>
<td>_half2float_rn</td>
<td>_hiloint2double</td>
</tr>
</tbody>
</table>
Host Modules

PGI provides a module which defines interfaces to the CUBLAS Library from PGI CUDA Fortran. These interfaces are made accessible by placing the following statement in the CUDA Fortran host-code program unit.

```fortran
use cublas
```

The interfaces are currently in three forms:

- **Overloaded traditional BLAS interfaces** which take device arrays as arguments rather than host arrays, i.e.
  ```fortran
call saxpy(n, a, x, incx, y, incy)
```
  where the arguments `x` and `y` have the device attribute.

- **Portable legacy CUBLAS interfaces** which interface directly with CUBLAS versions < 4.0, i.e.
  ```fortran
call cublasSaxpy(n, a, x, incx, y, incy)
```
  where the arguments `x` and `y` must have the device attribute.

- **New CUBLAS 4.0 interfaces** with access to all features of the new library.

These interfaces are all in the form of function calls, take a handle as the first argument, and pass many scalar arguments and results by reference, i.e.

```fortran
 istat = cublasSaxpy_v2(h, n, a, x, incx, y, incy)
```

In the case of `saxpy`, users now have the option of having "a" reside either on the host or device.

Functions which traditionally return a scalar, such as `sdot()` and `isamax()`, now take an extra argument for returning the result. Functions which traditionally take a `character*1` argument, such as 't' or 'n' to control transposing, now take an integer value defined in the `cublas` module.

To support the third form, a derived type named `cublasHandle` is defined in the `cublas` module. You can define a variable of this type using

```fortran
host _int2double_rd _int2double_rn _int2double_ru _int2double_rz
```
Initialize it by passing it to the `cublasCreate` function.

When using CUBLAS 4.0, the cublas module properly generates handles for the first two forms from serial and OpenMP parallel regions.

Intermixing the three forms is permitted. To access the handles used internally in the cublas module use:

```fortran
h = cublasGetHandle()
```

The following form “`istat = cublasGetHandle(h)`” is also supported.

```fortran
istat = cublasGetHandle(h)
```

Assignment and tests for equality and inequality are supported for the `cublasHandle` type.

CUDA 3.2 helper functions defined in the cublas module:

- `integer function cublasInit()`
- `integer function cublasShutdown()`  
- `integer function cublasGetError()`  
- `integer function cublasAlloc(n, elemsize, devptr)`  
- `integer function cublasFree(devptr)`  
- `integer function cublasSetVector(n, elemsize, x, incx, y, incy)`  
- `integer function cublasGetVector(n, elemsize, x, incx, y, incy)`  
- `integer function cublasSetMatrix(rows, cols, elemsize, a, lda, b, ldb)`  
- `integer function cublasGetMatrix(rows, cols, elemsize, a, lda, b, ldb)`  
- `integer function cublasSetKernelStream(stream)`  
- `integer function cublasSetVectorAsync(n, elemsize, x, incx, y, incy, stream)`  
- `integer function cublasGetVectorAsync(n, elemsize, x, incx, y, incy, stream)`  
- `integer function cublasSetMatrixAsync(rows, cols, elemsize, a, lda, b, ldb, stream)`  
- `integer function cublasGetMatrixAsync(rows, cols, elemsize, a, lda, b, ldb, stream)`

Additional CUDA 4.0 helper functions defined in the cublas module:

- `integer function cublasCreate(handle)`  
- `integer function cublasDestroy(handle)`  
- `integer function cublasGetVersion(handle, version)`  
- `integer function cublasSetStream(handle, stream)`  
- `integer function cublasGetStream(handle, stream)`  
- `integer function cublasGetPointerMode(handle, mode)`  
- `integer function cublasSetPointerMode(handle, mode)`

Refer to “`Cublas Module Example,”` on page 52 for an example that demonstrates the use of the cublas module, the `cublasHandle` type, and the three forms of calls.
Chapter 4. Runtime APIs

The system module cudafor defines the interfaces to the Runtime API routines.

Most of the runtime API routines are integer functions that return an error code; they return a value of zero if the call was successful, and a nonzero value if there was an error. To interpret the error codes, refer to “Error Handling,” on page 36.

Initialization

No explicit initialization is required; the runtime initializes and connects to the device the first time a runtime routine is called or a device array is allocated.

Tip

When doing timing runs, be aware that initialization can add some overhead.

Device Management

Use the functions in this section for device management.

cudaChooseDevice

integer function cudaChooseDevice ( devnum, prop )
    integer, intent(out) :: devnum
    type(cudadeviceprop), intent(in) :: prop

cudaChooseDevice assigns the device number that best matches the properties given in prop to its first argument.

cudaDeviceGetCacheConfig

integer function cudaDeviceGetCacheConfig ( cacheconfig )
    integer, intent(out) :: cacheconfig

cudaDeviceGetCacheConfig returns the preferred cache configuration for the current device. Current possible cache configurations are defined to be cudaFuncCachePreferNone, cudaFuncCachePreferShared, and cudaFuncCachePreferL1.
cudaDeviceGetLimit

```plaintext
integer function cudaDeviceGetLimit(val, limit)
 integer(kind=cuda_count_kind) :: val
 integer :: limit

cudaDeviceGetLimit returns in val the current size of limit. Current possible limit arguments are
cudaLimitStackSize, cudaLimitPrintfSize, and cudaLimitMallocHeapSize.
```

cudaDeviceReset

```plaintext
integer function cudaDeviceReset()

cudaDeviceReset resets the current device attached to the current process.
```

cudaDeviceSetCacheConfig

```plaintext
integer function cudaDeviceSetCacheConfig (cacheconfig)
 integer, intent(in) :: cacheconfig

cudaDeviceSetCacheConfig sets the current device preferred cache configuration. Current possible
cache configurations are defined to be cudaFuncCachePreferNone, cudaFuncCachePreferShared,
and cudaFuncCachePreferL1.
```

cudaDeviceSetLimit

```plaintext
integer function cudaDeviceSetLimit(limit, val)
 integer :: limit
 integer(kind=cuda_count_kind) :: val

cudaGetDeviceSetLimit sets the limit of the current device to val. Current possible limit arguments are
cudaLimitStackSize, cudaLimitPrintfSize, and cudaLimitMallocHeapSize.
```

cudaDeviceSynchronize

```plaintext
integer function cudaDeviceSynchronize()

cudaDeviceSynchronize blocks the current device until all preceding requested tasks have completed.
```

cudaGetDevice

```plaintext
integer function cudaGetDevice(devnum)
 integer, intent(out) :: devnum

cudaGetDevice assigns the device number associated with this host thread to its first argument.
```

cudaGetDeviceCount

```plaintext
integer function cudaGetDeviceCount(numdev)
 integer, intent(out) :: numdev

cudaGetDeviceCount assigns the number of available devices to its first argument.
```
### cudaGetDeviceProperties

```fortran
integer function cudaGetDeviceProperties(prop, devnum)
 type(cudadeviceprop), intent(out) :: prop
 integer, intent(in) :: devnum
```

cudaGetDeviceProperties returns the properties of a given device.

### cudaSetDevice

```fortran
integer function cudaSetDevice(devnum)
 integer, intent(in) :: devnum
```

cudaSetDevice selects the device to associate with this host thread.

### cudaSetDeviceFlags

```fortran
integer function cudaSetDevice(flags)
 integer, intent(in) :: flags
```

cudaSetDeviceFlags records how the CUDA runtime interacts with this host thread.

### cudaSetValidDevices

```fortran
integer function cudaSetValidDevices(devices, numdev)
 integer :: numdev, devices(numdev)
```

cudaSetValidDevices sets a list of valid devices for CUDA execution in priority order as specified in the devices array.

## Thread Management

Sometimes threads within a block access the same addresses in shared or global memory, thus creating potential read-after-write, write-after-read, or write-after-write hazards for some of these memory accesses. To avoid these potential issues, use the functions in this section for thread management. These functions have been deprecated beginning in CUDA 4.0.

### cudaThreadExit

```fortran
integer function cudaThreadExit()
```

cudaThreadExit explicitly cleans up all runtime-related CUDA resources associated with the host thread. Any subsequent CUDA calls or operations will reinitialize the runtime.

Calling cudaThreadExit is optional; it is implicitly called when the host thread exits.

### cudaThreadSynchronize

```fortran
integer function cudaThreadSynchronize()
```

cudaThreadSynchronize blocks execution of the host subprogram until all preceding kernels and operations are complete. It may return an error condition if one of the preceding operations fails.
Error Handling

Use the functions in this section for error handling.

cudaGetErrorString

```
def cudaGetErrorString(errcode):
 integer, intent(in) :: errcode
 character(*) :: cudaGetErrorString
```

cudaGetErrorString returns the message string associated with the given error code.

cudaGetLastError

```
integer function cudaGetLastError()
```

cudaGetLastError returns the error code that was most recently returned from any runtime call in this host thread.

cudaPeekAtLastError

```
integer function cudaPeekAtLastError()
```

cudaPeekAtLastError returns the last error code that has been produced by the CUDA runtime without resetting the error code to cudaSuccess like cudaGetLastError.

Stream Management

Use the functions in this section for stream management.

cudaStreamCreate

```
integer function cudaStreamCreate(stream)
 integer, intent(out) :: stream
```

cudaStreamCreate creates an asynchronous stream and assigns its identifier to its first argument.

cudaStreamDestroy

```
integer function cudaStreamDestroy(stream)
 integer, intent(in) :: stream
```

cudaStreamDestroy releases any resources associated with the given stream.

cudaStreamQuery

```
integer function cudaStreamQuery(stream)
 integer, intent(in) :: stream
```

cudaStreamQuery tests whether all operations enqueued to the selected stream are complete; it returns zero (success) if all operations are complete, and the value cudaErrorNotReady if not. It may also return another error condition if some asynchronous operations failed.
cudaStreamSynchronize

```plaintext
integer function cudaStreamSynchronize(stream)
 integer, intent(in) :: stream
```

cudaStreamSynchronize blocks execution of the host subprogram until all preceding kernels and operations associated with the given stream are complete. It may return error codes from previous, asynchronous operations.

cudaStreamWaitEvent

```plaintext
integer function cudaStreamWaitEvent(stream, event, flags)
 integer(kind=cuda_stream_kind) :: stream
 type(cudaEvent), intent(in) :: event
 integer :: flags
```

cudaStreamWaitEvent blocks execution on all work submitted on the stream until the event reports completion.

Event Management

Use the functions in this section to manage events.

cudaEventCreate

```plaintext
integer function cudaEventCreate(event)
 type(cudaEvent), intent(out) :: event
```

cudaEventCreate creates an event object and assigns the event identifier to its first argument

cudaEventCreateWithFlags

```plaintext
integer function cudaEventCreateWithFlags(event, flags)
 type(cudaEvent), intent(out) :: event
 integer :: flags
```

cudaEventCreateWithFlags creates an event object with the specified flags. Current flags supported are cudaEventDefault, cudaEventBlockingSync, and cudaEventDisableTiming.

cudaEventDestroy

```plaintext
integer function cudaEventDestroy(event)
 type(cudaEvent), intent(in) :: event
```

cudaEventDestroy destroys the resources associated with an event object.

cudaEventElapsedTime

```plaintext
integer function cudaEventElapsedTime(time, start, end)
 float :: time
 type(cudaEvent), intent() :: start, end
```

cudaEventElapsedTime computes the elapsed time between two events (in milliseconds). It returns cudaErrorInvalidValue if either event has not yet been recorded. This function is only valid with events recorded on stream zero.
**Execution Control**

**cudaEventQuery**

```fortran
integer function cudaEventQuery(event)
 type(cudaEvent), intent(in) :: event
```

cudaEventQuery tests whether an event has been recorded. It returns success (zero) if the event has been recorded, and cudaErrorNotReady if it has not. It returns cudaErrorInvalidValue if cudaEventRecord has not been called for this event.

**cudaEventRecord**

```fortran
integer function cudaEventRecord(event, stream)
 type(cudaEvent), intent(in) :: event
 integer, intent(in) :: stream
```

cudaEventRecord issues an operation to the given stream to record an event. The event is recorded after all preceding operations in the stream are complete. If stream is zero, the event is recorded after all preceding operations in all streams are complete.

**cudaEventSynchronize**

```fortran
integer function cudaEventSynchronize(event)
 type(cudaEvent), intent(in) :: event
```

cudaEventSynchronize blocks until the event has been recorded. It returns a value of cudaErrorInvalidValue if cudaEventRecord has not been called for this event.

**Execution Control**

CUDA Fortran does not support all API routines which duplicate the functionality of the chevron syntax. Additional functionality which has been provided with later versions of CUDA is available.

**cudaFuncGetAttributes**

```fortran
integer function cudaFuncGetAttributes(attr, func)
 type(cudaFuncAttributes), intent(out) :: attr
 character(*) :: func
```

cudaFuncGetAttributes gets the attributes for the function named by the func argument, which must be a global function.

**cudaFuncSetCacheConfig**

```fortran
integer function cudaFuncSetCacheConfig(func, cacheconfig)
 character(*) :: func
 integer :: cacheconfig
```

cudaFuncSetCacheConfig sets the preferred cache configuration for the function named by the func argument, which must be a global function. Current possible cache configurations are defined to be cudaFuncCachePreferNone, cudaFuncCachePreferShared, and cudaFuncCachePreferL1.
cudaSetDoubleForDevice

```fortran
integer function cudaSetDoubleForDevice(d)
 real(8) :: d

cudaSetDoubleForDevice sets the argument d to an internal representation suitable for devices which do not support double precision arithmetic.
```

cudaSetDoubleForHost

```fortran
integer function cudaSetDoubleForHost(d)
 real(8) :: d

cudaSetDoubleForHost sets the argument d from an internal representation on devices which do not support double precision arithmetic to the normal host representation.
```

**Memory Management**

Many of the memory management routines can take device arrays as arguments. Some can also take C types, provided through the Fortran 2003 `iso_c_binding` module, as arguments to simplify interfacing to existing CUDA C code.

CUDA Fortran has extended the F2003 derived type `TYPE(C_PTR)` by providing a C device pointer, defined in the `cudafor` module, as `TYPE(C_DEVPTR)`. Consistent use of `TYPE(C_PTR)` and `TYPE(C_DEVPTR)`, as well as consistency checks between Fortran device arrays and host arrays, should be of benefit.

Currently, it is possible to construct a Fortran device array out of a `TYPE(C_DEVPTR)` by using an extension of the `iso_c_binding` subroutine `c_f_pointer`. Under CUDA Fortran, `c_f_pointer` will take a `TYPE(C_DEVPTR)` as the first argument, an allocatable device array as the second argument, a shape as the third argument, and in effect transfer the allocation to the Fortran array. Similarly, there is also a function `C_DEVLOC()` defined which will create a `TYPE(C_DEVPTR)` that holds the C address of the Fortran device array argument. Both of these features are subject to change when, in the future, proper Fortran pointers for device data are supported.

Use the functions in this section for memory management.

**cudaFree**

```fortran
integer function cudaFree(devptr)

cudaFree deallocates data on the device. devptr may be any allocatable device array of a supported type specified in Table 3.1, “Device Code Intrinsic Datatypes,” on page 21. Or, devptr may be of `TYPE(C_DEVPTR)`.
```

cudaFreeArray

```fortran
integer function cudaFreeArray(carray)
 type(cudaArrayPtr) :: carray

cudaFreeArray frees an array that was allocated on the device.
```
cudaFreeHost

```fortran
integer function cudaFreeHost(hostptr)
 type(C_PTR) :: hostptr
end function cudaFreeHost
```

cudaFreeHost deallocates pinned memory on the host allocated with cudaMallocHost.

cudaGetSymbolAddress

```fortran
integer function cudaGetSymbolAddress(devptr, symbol)
 type(C_DEVPTR) :: devptr
 type(cudaSymbol) :: symbol
end function cudaGetSymbolAddress
```

cudaGetSymbolAddress returns in the devptr argument the address of symbol on the device. A symbol can be set to an external device name via a character string.

The following code sequence initializes a global device array “vx” from a CUDA C kernel:

```fortran
type(cudaSymbol) :: csvx
type(c_devptr) :: cdvx
real, allocatable, device :: vx(:)
csvx = "vx"
Istat = cudaGetSymbolAddress(cdvx, csvx)
Call c_f_pointer(cdvx, vx, 100)
Vx = 0.0
```

cudaGetSymbolSize

```fortran
integer function cudaGetSymbolSize(size, symbol)
 integer :: size
 type(cudaSymbol) :: symbol
end function cudaGetSymbolSize
```

cudaGetSymbolSize sets the variable size to the size of a device area in global or constant memory space referenced by the symbol.

cudaHostAlloc

```fortran
integer function cudaHostAlloc(hostptr, size, flags)
 type(C_PTR) :: hostptr
 integer :: size, flags
end function cudaHostAlloc
```

cudaHostAlloc allocates pinned memory on the host. It returns in hostptr the address of the page-locked allocation, or returns an error if the memory is unavailable. Size is in bytes. The flags argument enables different options to be specified that affect the allocation. The normal iso_c_binding subroutine c_f_pointer can be used to move the type(c_ptr) to a Fortran pointer.

cudaHostGetDevicePointer

```fortran
integer function cudaHostGetDevicePointer(devptr, hostptr, flags)
 type(C_DEVPTR) :: devptr
 type(C_PTR) :: hostptr
 integer :: flags
end function cudaHostGetDevicePointer
```

cudaHostGetDevicePointer returns a pointer to a device memory address corresponding to the pinned memory on the host. hostptr is a pinned memory buffer that was allocated via cudaHostAlloc(). It returns in devptr an address that can be passed to, and read and written by, a kernel which runs on
the device. The flags argument is provided for future releases. The normal iso_c_binding subroutine c_f_pointer can be used to move the type(c_devptr) to a device array.

**cudaHostGetFlags**

```fortran
integer function cudaHostGetFlags(flags, hostptr)
 integer :: flags
 type(C_PTR) :: hostptr
end function cudaHostGetFlags
```

`cudaHostGetFlags` returns the flags associated with a host pointer.

**cudaHostRegister**

```fortran
integer function cudaHostRegister(hostptr, count, flags)
 integer :: flags
 type(C_PTR) :: hostptr
end function cudaHostRegister
```

`cudaHostRegister` page-locks the memory associated with the host pointer and of size provided by the `count` argument, according to the `flags` argument.

**cudaHostUnregister**

```fortran
integer function cudaHostUnregister(hostptr)
 type(C_PTR) :: hostptr
end function cudaHostUnregister
```

`cudaHostUnregister` unmaps the memory associated with the host pointer and makes it page-able again. The argument `hostptr` must be the same as was used with `cudaHostRegister`.

**cudaMalloc**

```fortran
integer function cudaMalloc(devptr, count)
end function cudaMalloc
```

`cudaMalloc` allocates data on the device. `devptr` may be any allocatable, one-dimensional device array of a supported type specified in Table 3.1, “Device Code Intrinsic Datatypes,” on page 21. The `count` is in terms of elements. Or, `devptr` may be of TYPE(C_DEVPTR), in which case the `count` is in bytes.

**cudaMallocArray**

```fortran
integer function cudaMallocArray(carray, cdesc, width, height)
 type(cudaArrayPtr) :: carray
 type(cudaChannelFormatDesc) :: cdesc
 integer :: width, height
end function cudaMallocArray
```

`cudaMallocArray` allocates a data array on the device.

**cudaMallocHost**

```fortran
integer function cudaMallocHost(hostptr, size)
 type(C_PTR) :: hostptr
 integer :: size
end function cudaMallocHost
```

`cudaMallocHost` allocates pinned memory on the host. It returns in `hostptr` the address of the page-locked allocation, or returns an error if the memory is unavailable. `size` is in bytes. The normal iso_c_binding subroutine `c_f_pointer` can be used to move the type(c_ptr) to a Fortran pointer.
cudaMallocPitch

```fortran
integer function cudaMallocPitch(devptr, pitch, width, height)
```

cudaMallocPitch allocates data on the device. `devptr` may be any allocatable, two-dimensional device array of a supported type specified in Table 3.1, “Device Code Intrinsic Datatypes,” on page 21. The `width` is in terms of number of elements. The `height` is an integer.

cudaMallocPitch may pad the data, and the padded width is returned in the variable `pitch`. `devptr` may also be of TYPE(C_DEVPTR), in which case the integer values are expressed in bytes.

cudaMalloc3D

```fortran
integer function cudaMalloc3D(pitchptr, cext)
 type(cudaPitchedPtr), intent(out) :: pitchptr
 type(cudaExtent), intent(in) :: cext
```

cudaMalloc3D allocates data on the device. `pitchptr` is a derived type defined in the `cudafor` module. `cext` is also a derived type which holds the extents of the allocated array. Alternatively, `pitchptr` may be any allocatable, three-dimensional device array of a supported type specified in “Datatypes allowed,” on page 21.

cudaMalloc3DArray

```fortran
integer function cudaMalloc3DArray(carray, cdesc, cext)
 type(cudaArrayPtr) :: carray
 type(cudaChannelFormatDesc) :: cdesc
 type(cudaExtent) :: cext
```

cudaMalloc3DArray allocates array data on the device.

cudaMemcpy

```fortran
integer function cudaMemcpy(dst, src, count, kdir)
```

cudaMemcpy copies data from one location to another. `dst` and `src` may be any device or host, scalar or array, of a supported type specified in Table 3.1, “Device Code Intrinsic Datatypes,” on page 21. The `count` is in terms of elements. `kdir` may be optional; for more information, refer to “Data Transfer Using Runtime Routines,” on page 20. If `kdir` is specified, it must be one of the defined enums `cudaMemcpyHostToDevice`, `cudaMemcpyDeviceToHost`, or `cudaMemcpyDeviceToDevice`. Alternatively, `dst` and `src` may be of TYPE(C_DEVPTR) or TYPE(C_PTR), in which case the `count` is in terms of bytes.

cudaMemcpyArrayToArray

```fortran
integer function cudaMemcpyArrayToArray(dsta, dstx, dsty, srca, srcx, srcy, count, kdir)
```

cudaMemcpyArrayToArray copies array data to and from the device.
cudaMemcpyAsync

integer function cudaMemcpyAsync(dst, src, count, kdir, stream)
cudaMemcpy copies data from one location to another. dst and src may be any device or host, scalar or array, of a supported type specified in Table 3.1, “Device Code Intrinsic Datatypes,” on page 21. The count is in terms of elements. kdir may be optional; for more information, refer to “Data Transfer Using Runtime Routines,” on page 20. If kdir is specified, it must be one of the defined enums cudaMemcpyHostToDevice, cudaMemcpyDeviceToHost, or cudaMemcpyDeviceToDevice. Alternatively, dst and src may be of TYPE(C_DEVPTR) or TYPE(C_PTR), in which case the count is in terms of bytes.

This function operates on page-locked host memory only. The copy can be associated with a stream by passing a non-zero stream argument; otherwise the stream argument is optional and defaults to zero.

cudaMemcpyFromArray

integer function cudaMemcpyFromArray(dst, srca, srcx, srcy, count, kdir)
type(cudaArrayPtr) :: srca
integer :: dstx, dsty, count, kdir
cudaMemcpyFromArray copies array data to and from the device.

cudaMemcpyFromSymbolAsync

integer function cudaMemcpyFromSymbolAsync(dst, symbol, count, offset, kdir, stream)
type(cudaSymbol) :: symbol
integer :: count, offset, kdir
integer, optional :: stream
cudaMemcpyFromSymbol copies data from a device area in global or constant memory space referenced by a symbol to a destination on the host. dst may be any host scalar or array of a supported type specified in “Datatypes allowed,” on page 21. The count is in terms of elements.

This function operates on page-locked host memory only. The copy can be associated with a stream by passing a non-zero stream argument.

cudaMemcpyPeer

integer function cudaMemcpyPeer(dst, dstdev, src, srcdev, count)
cudaMemcpyPeer copies data from one device to another. dst and src may be any device scalar or array, of a supported type specified in Table 3.1, “Device Code Intrinsic Datatypes,” on page 21. The count is in terms of elements. Alternatively, dst and src may be of TYPE(C_DEVPTR), in which case the count is in term of bytes.

cudaMemcpyPeerAsync

integer function cudaMemcpyPeerAsync(dst, dstdev, src, srcdev, count, stream)
cudaMemcpyPeerAsync copies data from one device to another. dst and src may be any device scalar or array, of a supported type specified in Table 3.1, “Device Code Intrinsic Datatypes,” on page 21. The count is in terms of elements. Alternatively, dst and src may be of TYPE(C_DEVPTR), in which case the count is in term of bytes. The copy can be associated with a stream by passing a non-zero stream argument.
cudaMemcpyToArray

```plaintext
integer function cudaMemcpyToArray(dsta, dstx, dsty, src, count, kdir)
type(cudaArrayPtr) :: dsta
integer :: dstx, dsty, count, kdir
```

`cudaMemcpyToArray` copies array data to and from the device.

cudaMemcpyToSymbol

```plaintext
integer function cudaMemcpyToSymbol(symbol, src, count, offset, kdir)
type(cudaSymbol) :: symbol
integer :: count, offset, kdir
```

`cudaMemcpyToSymbol` copies data from the source to a device area in global or constant memory space referenced by a `symbol`. `src` may be any host scalar or array of a supported type as specified in “Datatypes allowed,” on page 21. The `count` is in terms of elements.

cudaMemcpyToSymbolAsync

```plaintext
integer function cudaMemcpyToSymbolAsync(symbol, src, count, offset, kdir, stream)
type(cudaSymbol) :: symbol
integer :: count, offset, kdir
integer, optional :: stream
```

`cudaMemcpyToSymbolAsync` copies data from the source to a device area in global or constant memory space referenced by a `symbol`. `src` may be any host scalar or array of a supported type specified in “Datatypes allowed,” on page 21. The `count` is in terms of elements.

This function operates on page-locked host memory only. The copy can be associated with a stream by passing a non-zero stream argument.

cudaMemcpy2D

```plaintext
integer function cudaMemcpy2D(dst, dpitch, src, spitch, width, height, kdir)
```

`cudaMemcpy2D` copies data from one location to another. `dst` and `src` may be any device or host array, of a supported type specified in Table 3.1, “Device Code Intrinsic Datatypes,” on page 21. The `width` and `height` are in terms of elements. `kdir` may be optional; for more information, refer to “Data Transfer Using Runtime Routines,” on page 20. If `kdir` is specified, it must be one of the defined enums `cudaMemcpyHostToDevice`, `cudaMemcpyDeviceToHost`, or `cudaMemcpyDeviceToDevice`. Alternatively, `dst` and `src` may be of TYPE(C_DEVPTR) or TYPE(C_PTR), in which case the `width` and `height` are in terms of bytes.

cudaMemcpy2DArrayToArray

```plaintext
integer function cudaMemcpy2DArrayToArray(dsta, dstx, dsty, srca, srcx, srcy, width, height, kdir)
type(cudaArrayPtr) :: dsta, srca
integer :: dstx, dsty, srcx, srcy, width, height, kdir
```

`cudaMemcpy2DArrayToArray` copies array data to and from the device.
cudaMemcpy2DAsync

integer function cudaMemcpy2DAsync(dst, dpitch, src, spitch, width, height, kdir, stream)

cudaMemcpy2DAsync copies data from one location to another. dst and src may be any device or host array, of a supported type specified in Table 3.1, “Device Code Intrinsic Datatypes,” on page 21. The width and height are in terms of elements. kdir may be optional; for more information, refer to “Data Transfer Using Runtime Routines,” on page 20. If kdir is specified, it must be one of the defined enums cudaMemcpyHostToDevice, cudaMemcpyDeviceToHost, or cudaMemcpyDeviceToDevice. Alternatively, dst and src may be of TYPE(C_DEVPTR) or TYPE(C_PTR), in which case the width and height are in term of bytes.

This function operates on page-locked host memory only. The copy can be associated with a stream by passing a non-zero stream argument, otherwise the stream argument is optional and defaults to zero.

cudaMemcpy2DFromArray

integer function cudaMemcpy2DFromArray(dst, dpitch, srca, srcx, srcy, width, height, kdir)

type(cudaArrayPtr) :: srca
integer :: dpitch, srcx, srcy, width, height, kdir

cudaMemcpy2DFromArray copies array data to and from the device.

cudaMemcpy2DToArray

integer function cudaMemcpy2DToArray(dsta, dstx, dsty, src, spitch, width, height, kdir)

type(cudaArrayPtr) :: dsta
integer :: dstx, dsty, spitch, width, height, kdir

cudaMemcpy2DToArray copies array data to and from the device.

cudaMemcpy3D

integer function cudaMemcpy3D(p)

type(cudaMemcpy3DParms) :: p

cudaMemcpy3D copies elements from one 3D array to another as specified by the data held in the derived type p.

cudaMemcpy3DAsync

integer function cudaMemcpy3DAsync(p, stream)

type(cudaMemcpy3DParms) :: p
integer :: stream

cudaMemcpy3DAsync copies elements from one 3D array to another as specified by the data held in the derived type p.

This function operates on page-locked host memory only. The copy can be associated with a stream by passing a non-zero stream argument.
cudaMemGetInfo

integer function cudaMemGetInfo( free, total )
   integer(kind=cuda_count_kind) :: free, total

cudaMemGetInfo returns the amount of free and total memory available for allocation on the device. The returned values units are in bytes.

cudaMemset

integer function cudaMemset(devptr, value, count)

cudaMemset sets a location or array to the specified value. devptr may be any device scalar or array of a supported type specified in Table 3.1, “Device Code Intrinsic Datatypes,” on page 21. The value must match in type and kind. The count is in terms of elements. Or, devptr may be of TYPE(C_DEVPTR), in which case the count is in term of bytes, and the lowest byte of value is used.

cudaMemset2D

integer function cudaMemset2D(devptr, pitch, value, width, height)

cudaMemset2D sets an array to the specified value. devptr may be any device array of a supported type specified in Table 3.1, “Device Code Intrinsic Datatypes,” on page 21. The value must match in type and kind. The pitch, width, and height are in terms of elements. Or, devptr may be of TYPE(C_DEVPTR), in which case the pitch, width, and height are in terms of bytes, and the lowest byte of value is used.

cudaMemset3D

integer function cudaMemset3D(pitchptr, value, cext)
   type(cudaPitchedPtr) :: pitchptr
   integer :: value
   type(cudaExtent) :: cext

cudaMemset3D sets elements of an array, the extents in each dimension specified by cext, which was allocated with cudaMalloc3D to a specified value.

Unified Addressing and Peer Device Memory Access

Use the functions in this section for managing multiple devices from the same process and threads.

cudaDeviceCanAccessPeer

integer function cudaDeviceCanAccessPeer( canAccessPeer, device, peerDevice )
   integer :: canAccessPeer, device, peerDevice

cudaDeviceCanAccessPeer returns in canAccessPeer the value 1 if the device argument can access memory in the device specified by the peerDevice argument.

cudaDeviceDisablePeerAccess

integer function cudaDeviceDisablePeerAccess ( peerDevice )
   integer :: peerDevice

cudaDeviceDisablePeerAccess disables the ability to access memory on the device specified by the peerDevice argument by the current device.
cudaDeviceEnablePeerAccess

    integer function cudaDeviceEnablePeerAccess ( peerDevice, flags )
    integer :: peerDevice, flags

cudaDeviceEnablePeerAccess enables the ability to access memory on the device specified by the peerDevice argument by the current device. Currently, flags must be zero.

cudaPointerGetAttributes

    integer function cudaPointerGetAttributes( attr, ptr )
    type(cudaPointerAttributes), intent(out) :: ptr

cudaPointerGetAttributes returns the attributes of a device or host pointer in the attributes type. ptr may be any host or device scalar or array of a supported type specified in “Datatypes allowed” on page 27. It may also be of type C_PTR or C_DEVPTR.

Version Management

Use the functions in this section for version management.

cudaDriverGetVersion

    integer function cudaDriverGetVersion(iversion)
    integer :: iversion

cudaDriverGetVersion returns the version number of the installed CUDA driver as iversion. If no driver is installed, then it returns 0 as iversion.

    This function automatically returns cudaErrorInvalidValue if the iversion argument is NULL.

cudaRuntimeGetVersion

    integer function cudaRuntimeGetVersion(iversion)
    integer :: iversion

cudaRuntimeGetVersion returns the version number of the installed CUDA Runtime as iversion.

    This function automatically returns cudaErrorInvalidValue if the iversion argument is NULL.
Chapter 5. Examples

This chapter contains

For up-to-date information about the state of the current release, visit the frequently asked questions (FAQ) section of the pgroup.com web page at: www.pgroup.com/support/index.htm

Matrix Multiplication Example

This example shows a program to compute the product C of two matrices A and B, as follows:

- Each thread block computes one 16x16 submatrix of C;
- Each thread within the block computes one element of the submatrix.

The submatrix size is chosen so the number of threads in a block is a multiple of the warp size (32) and is less than the maximum number of threads per thread block (512).

Each element of the result is the product of one row of A by one column of B. The program computes the products by accumulating submatrix products; it reads a block submatrix of A and a block submatrix of B, accumulates the submatrix product, then moves to the next submatrix of A rowwise and of B columnwise. The program caches the submatrices of A and B in the fast shared memory.

For simplicity, the program assumes the matrix sizes are a multiple of 16, and has not been highly optimized for execution time.

Source Code Listing

! start the module containing the matmul kernel
module mmul_mod
  use cudafor
  contains
    ! mmul_kernel computes A*B into C where
    ! A is NxM, B is MxL, C is then NxL
    attributes(global) subroutine mmul_kernel( A, B, C, N, M, L )
      real :: A(N,M), B(M,L), C(N,L)
      integer, value :: N, M, L
      integer :: i, j, kb, k, tx, ty
      ! submatrices stored in shared memory
      real, shared :: Asub(16,16), Bsub(16,16)
      ! the value of C(i,j) being computed
real :: Cij  
! Get the thread indices
tx = threadIdx%x
ty = threadIdx%y
! This thread computes C(i,j) = sum(A(i,:) * B(:,j))
i = (blockIdx%x-1) * 16 + tx
j = (blockIdx%y-1) * 16 + ty
Cij = 0.0
! Do the k loop in chunks of 16, the block size
do kb = 1, M, 16
! Fill the submatrices
! Each of the 16x16 threads in the thread block
! loads one element of Asub and Bsub
Asub(tx,ty) = A(i,kb+ty-1)
Bsub(tx,ty) = B(kb+tx-1,j)
! Wait until all elements are filled
call syncthreads()
! Multiply the two submatrices
! Each of the 16x16 threads accumulates the
! dot product for its element of C(i,j)
do k = 1,16
   Cij = Cij + Asub(tx,k) * Bsub(k,ty)
endo
! Synchronize to make sure all threads are done
! reading the submatrices before overwriting them
! in the next iteration of the kb loop
call syncthreads()
endo
! Each of the 16x16 threads stores its element
! to the global C array
C(i,j) = Cij
end subroutine mmul_kernel

! The host routine to drive the matrix multiplication
subroutine mmul( A, B, C )
   real, dimension(:,:) :: A, B, C
   ! allocatable device arrays
   real, device, allocatable, dimension(:,,:) :: Adev,Bdev,Cdev
   ! dim3 variables to define the grid and block shapes
type(dim3) :: dimGrid, dimBlock
!
! Get the array sizes
N = size( A, 1 )
M = size( A, 2 )
L = size( B, 2 )
! Allocate the device arrays
allocate( Adev(N,M), Bdev(M,L), Cdev(N,L) )
!
! Copy A and B to the device
Adev = A(1:N,1:M)
Bdev(:,:,1) = B(1:M,1:L)
!
! Create the grid and block dimensions
dimGrid = dim3( N/16, L/16, 1 )
dimBlock = dim3( 16, 16, 1 )
call mmul_kernel<<<dimGrid,dimBlock>>>( Adev, Bdev, Cdev,
!
! Copy the results back and free up memory
C(1:N,1:L) = Cdev
deallocate( Adev, Bdev, Cdev )
end subroutine mmul
end module mmul_mod
Source Code Description

This source code module `mmul_mod` has two subroutines. The host subroutine `mmul` is a wrapper for the kernel routine `mmul_kernel`.

**MMUL**

This host subroutine has two input arrays, `A` and `B`, and one output array, `C`, passed as assumed-shape arrays. The routine performs the following operations:

- It determines the size of the matrices in `N`, `M`, and `L`.
- It allocates device memory arrays `Adev`, `Bdev`, and `Cdev`.
- It copies the arrays `A` and `B` to `Adev` and `Bdev` using array assignments.
- It fills `dimGrid` and `dimBlock` to hold the grid and thread block sizes.
- It calls `mmul_kernel` to compute `Cdev` on the device.
- It copies `Cdev` back from device memory to `C`.
- It frees the device memory arrays.

Because the data copy operations are synchronous, no extra synchronization is needed between the copy operations and the kernel launch.

**MMUL_KERNEL**

This kernel subroutine has two device memory input arrays, `A` and `B`, one device memory output array, `C`, and three scalars giving the array sizes. The thread executing this routine is one of 16x16 threads cooperating in a thread block. This routine computes the dot product of `A(i,:) * B(:,j)` for a particular value of `i` and `j`, depending on the block and thread index.

It performs the following operations:

- It determines the thread indices for this thread.
- It determines the `i` and `j` indices, for which element of `C(i,j)` it is computing.
- It initializes a scalar in which it will accumulate the dot product.
- It steps through the arrays `A` and `B` in blocks of size 16.
- For each block, it does the following steps:
  - It loads one element of the submatrices of `A` and `B` into shared memory.
  - It synchronizes to make sure both submatrices are loaded by all threads in the block.
  - It accumulates the dot product of its row and column of the submatrices.
  - It synchronizes again to make sure all threads are done reading the submatrices before starting the next block.
- Finally, it stores the computed value into the correct element of `C`. 

Cublas Module Example

This example demonstrates the use of the cublas module, the cublasHandle type, and the three forms of calls.

```fortran
program testisamax
 ! Compile with "pgfortran -Mcuda=4.0 -mp testcublasOMP.cuf -lcublas -lacml
 use cudafor
 use cublas
 use omp_lib
 !
 integer, parameter :: N = 10000
 real*4 x(N)
 real*4, device, allocatable :: xd(:)
 integer, allocatable :: ks(:), istats(:), offs(:)
 logical, allocatable :: ls(:)
 integer, device, allocatable :: ksd(:)
 type(cublasHandle) :: h1, h2
 !$omp threadprivate(h1, h2)
 ! Run on host
 call random_number(x)
 k = isamax(N,x,1)
 print *, "HostSerial", k, x(k-1), x(k), x(k+1)
 ! CUDA data allocation setting
 allocate(xd(N))
 xd = x
 ! Break up the array into sections
 nsec = N / nthr
 allocate(ks(nthr), istats(nthr), offs(nthr), ls(nthr), ksd(nthr))
 offs = (/ (i*nsec, i=0, nthr-1) /)
 !!!!! Loop over this a few times
 do niters = 1, 3
 !$omp PARALLEL private(i, k)
 i = omp_get_thread_num() + 1
 k = isamax(nsec, xd(offs(i)+1), 1)
 ks(i) = k
 h2 = cublasGetHandle()
 ls(i) = h1.ne.h2
 !$omp end parallel
 if ((niters .gt. 1) .and. any(ls)) print *, "LP1 handle diffs", ls
 ks = ks + offs
 k = ks(maxloc(x(ks), dim=1))
 print *, "DevParLp1 ", k, x(k-1), x(k), x(k+1)
 !! Now serial, on device
 k = cublasIsamax(N, xd, 1)
 print *, "DevSerial ", k, x(k-1), x(k), x(k+1)
 ! Get handle from previous...
 ks = 0
 !$omp PARALLEL private(i)
 i = omp_get_thread_num() + 1
 h1 = cublasGetHandle()
 istats(i) = cublasIsamax_v2(h1, nsec, xd(offs(i)+1), 1, ks(i))
 ls(i) = h1.ne.h2
 !$omp end parallel
```

52
if (any(istats .ne. 0)) print *, "LP2 istats", istats
if (any(ls)) print *, "LP2 handle diffs", ls
ks = ks + offs
k = ks(maxloc(x(ks),dim=1))
print *, "DevParLp2 ", k, x(k-1), x(k), x(k+1)
  ! Again
end do

! Fall out
! Check that we remember h1
ks = 0
$omp PARALLEL private(i)
  i = omp_get_thread_num() + 1
  istats(i) = cublasIsamax_v2(h1, nsec, xd(offs(i)+1), 1, ks(i))
$omp end parallel
ks = ks + offs
k = ks(maxloc(x(ks),dim=1))
print *, "DevParLp3 ", k, x(k-1), x(k), x(k+1)

! Check that we remember h2, leave results on the device
ks = 0
$omp PARALLEL private(i, istat)
  i = omp_get_thread_num() + 1
  istat = cublasSetPointerMode(h2, CUBLAS_POINTER_MODE_DEVICE)
  istats(i) = cublasIsamax_v2(h2, nsec, xd(offs(i)+1), 1, ks(i))
$omp end parallel
ks = ksd + offs
k = ks(maxloc(x(ks),dim=1))
print *, "DevParLp4 ", k, x(k-1), x(k), x(k+1)
end
Chapter 6. Contact Information

You can contact The Portland Group at:

The Portland Group
STMicroelectronics, Inc.
Two Centerpointe Drive
Lake Oswego, OR 97035 USA

The PGI User Forum is monitored by members of the PGI engineering and support teams as well as other PGI customers. The forum newsgroups may contain answers to commonly asked questions. Log in to the PGI website to access the forum:

www.pgroup.com/userforum/index.php

Or contact us electronically using any of the following means:

Fax +1-503-682-2637
Sales sales@pgroup.com
Support trs@pgroup.com
WWW www.pgroup.com

All technical support is by email or submissions using an online form at www.pgroup.com/support. Phone support is not currently available.

Many questions and problems can be resolved at our frequently asked questions (FAQ) site at www.pgroup.com/support/faq.htm.

PGI documentation is available at www.pgroup.com/resources/docs.htm or in your local copy of the documentation in the release directory doc/index.htm.