Accelerators are the Future of HPC

- HPC can't support its own designs
 - commodity parts, software as well as hardware
- Accelerators allow break from ISA compatibility
- Accelerators allow strong scaling
- GPUs are the game today
 - designs are essentially free
- You must program to the new model
- Downside
 - future of commodity may be in mobile
 - commodity cpus and accelerators may not solve HPC problems

Programming Accelerators

- Goals
 - productivity
 - performance
 - portability
- Will it run fast on tomorrow's accelerators?

Options

- Low level
 - OpenCL, CUDA
 - full control
 - low on productivity, performance portability
 - high on performance
 - language is portable, even if programs are not
Options

- Libraries
 - Magma, etc.
 - programming to the library
 - essentially a limited-vocabulary language
 - high on portability, productivity, performance
 - if your program fits the vocabulary

Options

- Class library
 - TBB, Ct, (Rapidmind), Thrust
 - A type system and implementation
 - Advantage: some information instantiated at compile time
 - Other advantages / disadvantages are the same as library approach

Options

- High level, PGI Accelerator model, (eventually OpenMP)
 - High on productivity, portability
 - Performance is improving over time
 - Open question: how portable is the model?

How to Reach a Petaflop

- 10^6 = megaflop
- 10^9 = gigaflop
- 10^{12} = teraflop
- 10^{15} = petaflop
 - Jaguar
 - 16,688 dual-socket six-core nodes
 - 2.6GHz, 4-8 GFlops/core, 224,256 cores
 - $(\cdot 224 \times 10^9$ cores) x (2.6 x 10^9 GHz) x (4 results)
 - 2.32×10^{15} results/cycle = 2.32 Petaflops (double precision)
 - Top500 Rmax = 1.759 PFlops, Rpeak = 2.331 PFlops
How to Reach an Exaflop

- $10^6 = \text{megaflop}$
- $10^9 = \text{gigaflop}$
- $10^{12} = \text{teraflop}$
- $10^{15} = \text{petaflop}$
- $10^{18} = \text{exaflop} = 10^9 \times 10^9$
 - one billion gigaflop cores = one exaflop (MPI$$)$*
 - 1 million quad-socket 256-core nodes at 1GHz
 - 50X nodes, 2X sockets/node, 40X cores/socket relative to Jaguar
 - at 4 results/GHz, reduce by 1/4, higher clock reduces as well
 - one million teraflop cores = one exaflop
 - 1,000 ops / cycle (1GHz)

How to Reach an Exaflop

- Maybe O(100,000) 10-teraflop nodes
 - wide SIMD, multitreading, latency tolerant
 - 1GHz clock = 10,000 operations/cycle (5,000 mul+add)

Jaguar

- Proposed

<table>
<thead>
<tr>
<th>Jaguar</th>
<th>Proposed</th>
</tr>
</thead>
<tbody>
<tr>
<td>224,256 cores</td>
<td>O(100,000) units</td>
</tr>
<tr>
<td>37,376 sockets</td>
<td>100,000 sockets</td>
</tr>
<tr>
<td>18,688 nodes</td>
<td>O(100,000) nodes</td>
</tr>
<tr>
<td>2.5GHz clock</td>
<td>1GHz clock</td>
</tr>
<tr>
<td>4-8 GFlops/core</td>
<td>O(1,000) GFlops/unit</td>
</tr>
<tr>
<td>24-48 GFlops/socket</td>
<td>1,000 GFlops/socket</td>
</tr>
<tr>
<td>48-96 GFlops/node</td>
<td>O(1,000) GFlops/node</td>
</tr>
</tbody>
</table>

Additional Information

- PGI Accelerator Programming Model
 - x86 + NVIDIA
 - PGI Fortran and C
 - Linux, Windows, OSX
 - www.pgroup.com/accelerate for documentation, FAQ, articles

- PGI CUDA Fortran
 - x86 + NVIDIA
 - PGI Fortran
 - Linux, Windows, OSX
 - www.pgroup.com/cudafortran for documentation, FAQ, articles

- Common Compiler Feedback Format (CCFF)
 - integrated into all PGI compilers and pgprof
 - www.pgroup.com/CCFF for additional information

Copyright Notice

© Contents copyright 2009-2011, The Portland Group, Inc. This material may not be reproduced in any manner without the expressed written permission of The Portland Group.